The thickness of graphs: A survey

被引:67
作者
Mutzel, P
Odenthal, T
Scharbrodt, M
机构
[1] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
[2] Columbia Univ, IEOR Dept, New York, NY 10027 USA
[3] Tech Univ Munich, Lehrstuhl Brauereianlagen & Lebensmittel Verpacku, D-85350 Freising Weihenstephan, Germany
关键词
thickness; maximum planar subgraph; branch and cut;
D O I
10.1007/PL00007219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a state-of-the-art survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs.
引用
收藏
页码:59 / 73
页数:15
相关论文
共 49 条
[1]  
AGGARWAL A, 1991, ALGORITHMICA, V6, P129, DOI 10.1007/BF01759038
[2]   THICKNESS OF AN ARBITRARY COMPLETE GRAPH [J].
ALEKSEEV, VB ;
GONCAKOV, VS .
MATHEMATICS OF THE USSR-SBORNIK, 1976, 30 (02) :187-202
[3]  
[Anonymous], 1974, LONDON MATH SOC LECT, V13, P57
[4]  
[Anonymous], 1961, J Lond Math Soc, DOI DOI 10.1112/JLMS/S1-36.1.445
[5]   ON THE GENUS AND THICKNESS OF GRAPHS [J].
ASANO, K .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1987, 43 (03) :287-292
[6]   EVERY PLANAR GRAPH WITH 9 POINTS HAS A NONPLANAR COMPLEMENT [J].
BATTLE, J ;
KODAMA, Y ;
HARARY, F .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1962, 68 (06) :569-&
[7]  
BEINEKE L, 1978, SELECTED TOPICS GRAP, P15
[8]  
Beineke L. W., 1988, C NUM, V63, P127
[9]   MINIMAL DECOMPOSITIONS OF COMPLETE GRAPHS INTO SUBGRAPHS WITH EMBEDDABILITY PROPERTIES [J].
BEINEKE, LW .
CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (04) :992-&
[10]   THICKNESS OF COMPLETE GRAPH [J].
BEINEKE, LW ;
HARARY, F .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (06) :850-&