Dual Redox Active Sites N-C@Ni2P/NiSe2 Heterostructure Supercapacitor Integrated with Triboelectric Nanogenerator toward Efficient Energy Harvesting and Storage

被引:52
作者
Gao, Xiangyang [1 ,2 ]
Zhang, Yuanzheng [1 ,2 ]
Yin, Shukun [1 ]
Mao, Yiqian [1 ,2 ]
Gui, Jinzheng [1 ,2 ]
Li, Jingxing [1 ,2 ]
Zhao, Yafei [3 ]
Sun, Chengliang [4 ]
Guo, Shishang [1 ,2 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Minist Educ, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[2] Hubei Yangtze Memory Labs, Wuhan 430205, Peoples R China
[3] Zhengzhou Univ, Sch Chem Engn, Zhengzhou 450001, Peoples R China
[4] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
dual redox active sites; heterostructures; self-charging power systems; supercapacitors; triboelectric nanogenerators; HIGHLY EFFICIENT; NANOWRINKLES; PERFORMANCE; ARRAYS;
D O I
10.1002/adfm.202204833
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploring efficient energy systems with integrated energy harvesting and storage toward sustainable power sources is an extremely promising solution for alleviating the energy crisis but nevertheless remains an arduous challenge. Here, a high-efficient self-charging power system (SCPS) by integrating solid-state asymmetric supercapacitors device (SASD) and rotational triboelectric nanogenerator (RTENG) to achieve efficient energy harvesting and storage is reported. Dual redox active sites Ni2P/NiSe2 heterostructure is homogeneously inlaid on N-C (N-C@Ni2P/NiSe2) via an in situ phosphoselenization, which achieves the maximum exposure of active sites and prevents the aggregation of nanoparticles. The ingeniously designed N-C@Ni2P/NiSe2 heterostructure features high activity dual redox sites, well-defined heterointerface, and stable superhighway conductive support, which facilitates high electrochemical reaction efficiency, accelerated reaction kinetics, and enhanced electrochemical stability, thus achieving high capacitance and excellent stability. Meanwhile, the SASD delivers high energy density and long lifespan. Furthermore, the RTENG exhibits high output performance, enabling efficient energy harvesting. The SCPS can reach a voltage of 3.8 V within 40 s, and continuously power electronics. It is believed that the proposed survey based on the design and integration of dual redox active sites heterostructure will offer a new prospect for next-generation sustainable power sources.
引用
收藏
页数:14
相关论文
共 65 条
[1]   Integrated Triboelectric Nanogenerators in the Era of the Internet of Things [J].
Ahmed, Abdelsalam ;
Hassan, Islam ;
El-Kady, Maher F. ;
Radhi, Ali ;
Jeong, Chang Kyu ;
Selvaganapathy, Ponnambalam Ravi ;
Zu, Jean ;
Ren, Shenqiang ;
Wang, Qing ;
Kaner, Richard B. .
ADVANCED SCIENCE, 2019, 6 (24)
[2]   Plasma-Assisted Synthesis of NiSe2 Ultrathin Porous Nanosheets with Selenium Vacancies for Supercapacitor [J].
Chang, Ailiu ;
Zhang, Chao ;
Yu, Yu ;
Yu, Yifu ;
Zhang, Bin .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (49) :41861-41865
[3]   Direct Current Fabric Triboelectric Nanogenerator for Biomotion Energy Harvesting [J].
Chen, Chaoyu ;
Guo, Hengyu ;
Chen, Lijun ;
Wang, Yi-Cheng ;
Pu, Xianjie ;
Yu, Weidong ;
Wang, Fumei ;
Du, Zhaoqun ;
Wang, Zhong Lin .
ACS NANO, 2020, 14 (04) :4585-4594
[4]   A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing [J].
Chen, Fangqi ;
Wu, Yonghui ;
Ding, Zhenyu ;
Xia, Xin ;
Li, Shaoheng ;
Zheng, Haiwu ;
Diao, Chunli ;
Yue, Gentian ;
Zi, Yunlong .
NANO ENERGY, 2019, 56 :241-251
[5]   Tuning Interface Bridging Between MoSe2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability [J].
Chen, Jing ;
Luo, Yilin ;
Zhang, Wenchao ;
Qiao, Yu ;
Cao, Xinxin ;
Xie, Xuefang ;
Zhou, Haoshen ;
Pan, Anqiang ;
Liang, Shuquan .
NANO-MICRO LETTERS, 2020, 12 (01)
[6]   Stretchable Coplanar Self-Charging Power Textile with Resist-Dyeing Triboelectric Nanogenerators and Microsupercapacitors [J].
Cong, Zifeng ;
Guo, Wenbin ;
Guo, Zihao ;
Chen, Yanghui ;
Liu, Mengmeng ;
Hou, Tingting ;
Pu, Xiong ;
Hu, Weiguo ;
Wang, Zhong Lin .
ACS NANO, 2020, 14 (05) :5590-5599
[7]   Confined N-CoSe2 active sites boost bifunctional oxygen electrocatalysis for rechargeable Zn-air batteries [J].
Ding, Kuixing ;
Hu, Jiugang ;
Luo, Jia ;
Jin, Wei ;
Zhao, Liming ;
Zheng, Lirong ;
Yan, Wensheng ;
Weng, Baicheng ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANO ENERGY, 2022, 91
[8]   Metal Organic Framework-Templated Synthesis of Bimetallic Selenides with Rich Phase Boundaries for Sodium-Ion Storage and Oxygen Evolution Reaction [J].
Fang, Guozhao ;
Wang, Qichen ;
Zhou, Jiang ;
Lei, Yongpeng ;
Chen, Zixian ;
Wang, Ziqing ;
Pan, Anqiang ;
Liang, Shuquan .
ACS NANO, 2019, 13 (05) :5635-5645
[9]   Highly wearable, machine-washable, and self-cleaning fabric-based triboelectric nanogenerator for wireless drowning sensors [J].
Feng, Min ;
Wu, Yang ;
Feng, Yange ;
Dong, Yang ;
Liu, Yubo ;
Peng, Jialiang ;
Wang, Nannan ;
Xu, Shiwei ;
Wang, Daoai .
NANO ENERGY, 2022, 93
[10]   Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell [J].
Gao, Xiangyang ;
Zhang, Yuanzheng ;
Zhao, Yafei ;
Yin, Shukun ;
Gui, Jinzheng ;
Sun, Chengliang ;
Guo, Shishang .
NANO ENERGY, 2022, 91