Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle

被引:34
作者
Talataisong, Wanvisa [1 ,2 ]
Gorecki, Jon [1 ,3 ]
van Putten, Lieke D. [1 ]
Ismaeel, Rand [1 ,4 ]
Williamson, James [5 ]
Addinall, Katie [5 ]
Schwendemann, Daniel [6 ]
Beresna, Martynas [1 ]
Apostolopoulos, Vasilis [3 ]
Brambilla, Gilberto [1 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[2] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[4] Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England
[5] Univ Huddersfield, Ctr Precis Technol, Huddersfield HD1 3DH, W Yorkshire, England
[6] Univ Appl Sci Eastern Switzerland, Inst Mat Sci & Plast Proc, CH-8640 Rapperswil, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
HIGH-NONLINEARITY; OPTICAL-FIBERS; HOLEY FIBERS; WAVE-GUIDES; EXTRUSION; TRANSMISSION; BAND;
D O I
10.1364/PRJ.420672
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report the use of a terahertz (THz) transparent material, cyclic olefin copolymer (COC or TOPAS), for fabricating a hollow-core antiresonant fiber that provides an electromagnetic wave guidance in the THz regime. A novel fabrication technique to realize a hollow-core antiresonant polymer optical fiber (HC-ARPF) for THz guidance is proposed and demonstrated. The fiber is directly extruded in a single-step procedure using a conventional fused deposition modeling 3D printer. The fiber geometry is defined by a structured nozzle manufactured with a metal 3D printer, which allows tailoring of the nozzle design to the various geometries of micro-structured optical fibers. The possibility to use the HC-ARPF made from TOPAS for guiding in the THz region is theoretically and experimentally assessed through the profile of mode simulation and time-frequency diagram (spectrogram) analysis. (C) 2021 Chinese Laser Press
引用
收藏
页码:1513 / 1521
页数:9
相关论文
共 54 条
[1]   Terahertz band: Next frontier for wireless communications [J].
Akyildiz, Ian F. ;
Jornet, Josep Miquel ;
Han, Chong .
PHYSICAL COMMUNICATION, 2014, 12 :16-32
[2]   Microstructured terahertz waveguides [J].
Andrews, Steven R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (37)
[3]  
Argyros A., 2012, ISRN Optics, V2013, P22, DOI [10.1155/2013/785162, DOI 10.1155/2013/785162]
[4]   Cleaving of Extremely Porous Polymer Fibers [J].
Atakaramians, S. ;
Cook, K. ;
Ebendorff-Heidepriem, H. ;
Afshar, S., V ;
Canning, J. ;
Abbott, D. ;
Monro, T. M. .
IEEE PHOTONICS JOURNAL, 2009, 1 (06) :286-292
[5]   Terahertz dielectric waveguides [J].
Atakaramians, Shaghik ;
Afshar, Shahraam V. ;
Monro, Tanya M. ;
Abbott, Derek .
ADVANCES IN OPTICS AND PHOTONICS, 2013, 5 (02) :169-215
[6]   THz porous fibers: design, fabrication and experimental characterization [J].
Atakaramians, Shaghik ;
Afshar V., Shahraam ;
Ebendorff-Heidepriem, Heike ;
Nagel, Michael ;
Fischer, Bernd M. ;
Abbott, Derek ;
Monro, Tanya M. .
OPTICS EXPRESS, 2009, 17 (16) :14053-14062
[7]   Terahertz time-domain spectroscopy for non-invasive assessment of water content in biological samples [J].
Borovkova, Mariia ;
Khodzitsky, Mikhail ;
Demchenko, Petr ;
Cherkasova, Olga ;
Popov, Alexey ;
Meglinski, Igor .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (05) :2266-2276
[8]   THz Optics 3D Printed with TOPAS [J].
Busch, Stefan F. ;
Weidenbach, Marcel ;
Balzer, Jan C. ;
Koch, Martin .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2016, 37 (04) :303-307
[9]  
Chen Q., 2013, 2013 38 INT C INFR M, P1
[10]   Development of 2.5 THz suspended porous microstructured fiber based on cyclic-olefin copolymer [J].
Chen, Qi ;
Zhu, Wenjing ;
Kong, Depeng ;
He, Xiaoyang ;
Li, Bo ;
Miao, Jing ;
Luo, Zhenfei ;
Zhou, Xun ;
Yang, Chun ;
Zhang, Jian .
OPTIK, 2017, 145 :56-60