Z-theorems: limits of stochastic equations

被引:2
作者
Anisimov, VV [1 ]
Pflug, GC
机构
[1] Bilkent Univ, Dept Ind Engn, TR-06533 Ankara, Turkey
[2] Kiev State Univ, Fac Cybernet, UA-252017 Kiev 17, Ukraine
[3] Univ Vienna, Inst Stat & Decis Support, A-1010 Vienna, Austria
关键词
asymptotic distribution; consistency; stochastic equations; stochastic inclusion;
D O I
10.2307/3318762
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f(n)(theta, omega) be a sequence of stochastic processes which converge weakly to a limit process f(0)(theta, omega). We show under some assumptions the: weak inclusion of the solution sets theta(n)(omega)= {theta: f(n)(theta, omega) = 0} in the limiting solution set theta(0)(omega) = {theta: f(0)(theta, omega) = 0}. If the limiting solutions are almost surely singletons, then weak convergence holds. Results of this type are called Z-theorems (zero-theorems). Moreover, we give various more specific convergence results, which have applications for stochastic equations, statistical estimation and stochastic optimization.
引用
收藏
页码:917 / 938
页数:22
相关论文
共 10 条
[1]  
ANISIMOV VV, 1994, THEORY PROBAB MATH S, V51, P1
[2]  
ANISIMOV VV, 1993, THEORY PROBAB MATH S, V49, P1
[3]  
ANISIMOV VV, 1991, THEORY PROBAB MATH, V45, P3
[4]  
Ibragimov IA, 1981, STAT ESTIMATION ASYM
[5]  
PFLUG G, 1995, MATH OPER RES, V18, P829
[6]  
PFLUG GC, 1992, CZECHOSLOVAK J OPER, V1, P21
[7]   ON THE CONVERGENCE IN DISTRIBUTION OF MEASURABLE MULTIFUNCTIONS (RANDOM SETS), NORMAL INTEGRANDS, STOCHASTIC-PROCESSES AND STOCHASTIC INFIMA [J].
SALINETTI, G ;
WETS, RJB .
MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (03) :385-419
[8]   ASYMPTOTIC-BEHAVIOR OF OPTIMAL-SOLUTIONS IN STOCHASTIC-PROGRAMMING [J].
SHAPIRO, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (04) :829-845
[9]  
Skorokhod A.V., 1956, TEOR VEROYA PRIMEN, V1, P289
[10]  
Van der Vaart A., 1995, STAT NEERL, V49, P9