An exactly solvable linear model giving indication of stochastic resonance

被引:21
作者
Bezak, V [1 ]
机构
[1] Comenius Univ, Fac Math & Phys, Dept Solid State Phys, Bratislava 84215, Slovakia
关键词
D O I
10.1023/A:1021260918362
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The linear stochastic equation dx(beta)(t)/dt + [1 + f(beta)(t)]x(beta)(t) = Asin(Omega t) is discussed. The function f(beta)(t) is defined as a Poissonian noise dependent on a parameter beta > 0, f beta(t) = beta Sigma(j)[delta(t - t(j)(+)) - delta(t - t(j)(-))]. The mean frequency of the delta-pulses is chosen as beta-dependent in the form lambda(beta) = 2 gamma(beta(-2) + 1) exp(-beta) where gamma is a constant from the interval (0, 0.974). With the stochastic function f(beta)(t) defined in this way, attention is paid on the oscillational term of the averaged function [x(t)], [x(t)](osc) = (A) over bar sin(Omega t - alpha). It is found that the dependence (A) over bar = (A) over bar(beta) exhibits one maximum and one minimum. The occurrence of these extrema seems to affirm the presence of stochastic resonance.
引用
收藏
页码:529 / 535
页数:7
相关论文
共 8 条
[1]   Multiplicative stochastic resonance in linear systems: Analytical solution [J].
Berdichevsky, V ;
Gitterman, M .
EUROPHYSICS LETTERS, 1996, 36 (03) :161-165
[2]  
Bezak V., 1993, Acta Physica Slovaca, V43, P301
[3]  
BEZAK V, 1992, J PHYS A, V23, P6027
[4]  
BLANCLAPIERRE A, 1967, THEORY RANDOM FUNCTI, V1
[5]  
BRISSAUD A, 1974, J MATH PHYS, V15, P524, DOI 10.1063/1.1666678
[6]   NON-GAUSSIAN DIFFUSION [J].
LASKIN, NV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10) :1565-1576
[7]  
RYTOV SM, 1976, INTRO STAT RADIO P 1
[8]  
Tikhonov VI., 1982, Statistical Radio Engineering