Generalized Fuzzy Quasi-Ideals of an Intraregular Abel-Grassmann's Groupoid

被引:5
作者
Davvaz, Bijan [1 ]
Khan, Madad [2 ]
Anis, Saima [2 ]
Haq, Shamsul [2 ]
机构
[1] Yazd Univ, Dept Math, Yazd 89195741, Iran
[2] COMSATS Inst Informat Technol, Dept Math, Abbottabad 22060, Pakistan
关键词
D O I
10.1155/2012/627075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We have introduced a new nonassociative class of Abel-Grassmann's groupoid, namely, intraregular and characterized it in terms of its (is an element of, is an element of boolean OR(q))-fuzzy quasi-ideals.
引用
收藏
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 2003, STUD FUZZ SOFT COMP
[2]   (is an element of,is an element of boolean OR q)-fuzzy subgroup [J].
Bhakat, SK ;
Das, P .
FUZZY SETS AND SYSTEMS, 1996, 80 (03) :359-368
[3]   ON THE DEFINITION OF A FUZZY SUBGROUP [J].
BHAKAT, SK ;
DAS, P .
FUZZY SETS AND SYSTEMS, 1992, 51 (02) :235-241
[4]   (ε ε v q)-fuzzy subnear-rings and ideals [J].
Davvaz, B .
SOFT COMPUTING, 2006, 10 (03) :206-211
[5]   Generalized fuzzy interior ideals in semigroups [J].
Jun, Young Bae ;
Song, Seok Zun .
INFORMATION SCIENCES, 2006, 176 (20) :3079-3093
[6]  
Khan M., 2010, J ADV RES PURE MATH, V2, P61
[7]   Fuzzy points of equivalent fuzzy subsets [J].
Murali, V .
INFORMATION SCIENCES, 2004, 158 :277-288
[8]  
Mushtaq Q., 1978, Alig. Bull. Math., V8, P65
[9]  
Proti P. V., 1995, Pure Math. Appl., V6, P371
[10]  
PU PM, 1980, J MATH ANAL APPL, V76, P571