Topological rings, homogeneous functions, and primeness

被引:0
作者
Booth, G. L. [1 ]
Meyer, J. H. [2 ]
Mogae, K. [1 ]
机构
[1] Nelson Mandela Metropolitan Univ, Port Elizabeth, South Africa
[2] Univ Free State, POB 339, ZA-9300 Bloemfontein, South Africa
基金
新加坡国家研究基金会;
关键词
Continuous; homogeneous function; near-ring; prime; topological ring; CENTRALIZER NEAR-RINGS; IDEALS;
D O I
10.1080/00927872.2015.1130149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any group G such that G is a right R-module for some ring R, the elements of R act on G as endomorphisms and we obtain the near-ring of R-homogeneous maps on G: M-R(G)={f: GG|f(ga)=f(g)a for all aR, gG}. In the special case that R is a topological ring and G is a topological R-module, we study N-R(G): ={fM(R)(G)|f is continuous}. In particular, we investigate primeness of the near-ring N-R(G) of continuous homogeneous maps on G.
引用
收藏
页码:322 / 331
页数:10
相关论文
共 16 条
[1]  
Booth G.L., 1998, INDIAN J MATH, V40, P113
[2]   A KUROSH-AMITSUR PRIME RADICAL FOR NEAR-RINGS [J].
BOOTH, GL ;
GROENEWALD, NJ ;
VELDSMAN, S .
COMMUNICATIONS IN ALGEBRA, 1990, 18 (09) :3111-3122
[3]  
BOOTH GL, 1991, QUAEST MATH, V14, P483
[4]  
Godloza L, 2004, THESIS
[5]   STRONGLY PRIME NEAR-RINGS [J].
GROENEWALD, NJ .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1988, 31 :337-343
[6]   DIFFERENT PRIME IDEALS IN NEAR-RINGS [J].
GROENEWALD, NJ .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (10) :2667-2675
[7]  
Higgins PJ., 1974, Introduction to topological groups
[8]  
Husain T. S., 1966, INTRO TOPOLOGICAL GR
[9]   CENTRALIZER NEAR-RINGS THAT ARE ENDOMORPHISM-RINGS [J].
MAXSON, CJ ;
SMITH, KC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (02) :189-195
[10]   CENTRALIZER NEAR-RINGS OVER FREE RING MODULES [J].
MAXSON, CJ ;
VANDERWALT, APJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1991, 50 :279-296