Direct Sparse Stereo Visual-Inertial Global Odometry

被引:5
|
作者
Wang, Ziqiang [1 ]
Li, Mei [1 ]
Zhou, Dingkun [1 ]
Zheng, Ziqiang [1 ]
机构
[1] UISEE Shanghai Automot Technol LTD, Shanghai 201800, Peoples R China
关键词
KALMAN FILTER; VERSATILE; ROBUST;
D O I
10.1109/ICRA48506.2021.9561410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust and accurate localization plays a key role in autonomous driving and robot applications. To utilize the complementary properties of different sensors, we present a novel tightly-coupled approach to combine the local (stereo cameras, IMU) and global sensors (magnetometer, GNSS). We jointly optimize all the model parameters through one active window. The visual part integrates constraints from static stereo into the photometric bundle adjustment pipeline of dynamic multiview stereo. Accumulating IMU information between keyframes, magnetometer and GNSS measurements are all inserted into the active window as additional constrains among all the keyframes. Through these, our method can realize globally drift-free and locally accurate state estimation. We evaluate the effectiveness of our system on public datasets under with real-world experiments.
引用
收藏
页码:14403 / 14409
页数:7
相关论文
共 50 条
  • [41] The First Attempt of SAR Visual-Inertial Odometry
    Liu, Junbin
    Qiu, Xiaolan
    Ding, Chibiao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 287 - 304
  • [42] Monocular Visual-Inertial Odometry for Agricultural Environments
    Song, Kaiyu
    Li, Jingtao
    Qiu, Run
    Yang, Gaidi
    IEEE ACCESS, 2022, 10 : 103975 - 103986
  • [43] ATVIO: ATTENTION GUIDED VISUAL-INERTIAL ODOMETRY
    Liu, Li
    Li, Ge
    Li, Thomas H.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 4125 - 4129
  • [44] Aerial Visual-Inertial Odometry Performance Evaluation
    Carson, Daniel J.
    Raquet, John F.
    Kauffman, Kyle J.
    PROCEEDINGS OF THE ION 2017 PACIFIC PNT MEETING, 2017, : 137 - 154
  • [45] Pose estimation by Omnidirectional Visual-Inertial Odometry
    Ramezani, Milad
    Khoshelham, Kourosh
    Fraser, Clive
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2018, 105 : 26 - 37
  • [46] Challenges of Dynamic Environment for Visual-Inertial Odometry
    Zhu, Tao
    Ma, Huimin
    2018 3RD INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING (ICRAE), 2018, : 82 - 86
  • [47] Robust Mono Visual-Inertial Odometry Using Sparse Optical Flow With Edge Detection
    Zeng, Qingxi
    Gao, Chang
    Chen, Zewang
    Jin, Yu
    Kan, Yuchao
    IEEE SENSORS JOURNAL, 2022, 22 (06) : 5260 - 5269
  • [48] Monocular Visual-Inertial Odometry with Planar Regularities
    Chen, Chuchu
    Geneva, Patrick
    Peng, Yuxiang
    Lee, Woosik
    Huang, Guoquan
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 6224 - 6231
  • [49] EqVIO: An Equivariant Filter for Visual-Inertial Odometry
    van Goor, Pieter
    Mahony, Robert
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (05) : 3567 - 3585
  • [50] Edge-based Visual-Inertial Odometry
    Yu, Hongsheng
    Mourikis, Anastasios I.
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6670 - 6677