Direct Sparse Stereo Visual-Inertial Global Odometry

被引:5
|
作者
Wang, Ziqiang [1 ]
Li, Mei [1 ]
Zhou, Dingkun [1 ]
Zheng, Ziqiang [1 ]
机构
[1] UISEE Shanghai Automot Technol LTD, Shanghai 201800, Peoples R China
关键词
KALMAN FILTER; VERSATILE; ROBUST;
D O I
10.1109/ICRA48506.2021.9561410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust and accurate localization plays a key role in autonomous driving and robot applications. To utilize the complementary properties of different sensors, we present a novel tightly-coupled approach to combine the local (stereo cameras, IMU) and global sensors (magnetometer, GNSS). We jointly optimize all the model parameters through one active window. The visual part integrates constraints from static stereo into the photometric bundle adjustment pipeline of dynamic multiview stereo. Accumulating IMU information between keyframes, magnetometer and GNSS measurements are all inserted into the active window as additional constrains among all the keyframes. Through these, our method can realize globally drift-free and locally accurate state estimation. We evaluate the effectiveness of our system on public datasets under with real-world experiments.
引用
收藏
页码:14403 / 14409
页数:7
相关论文
共 50 条
  • [31] Information Sparsification in Visual-Inertial Odometry
    Hsiung, Jerry
    Hsiao, Ming
    Westman, Eric
    Valencia, Rafael
    Kaess, Michael
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1146 - 1153
  • [32] Online Spatial and Temporal Calibration for Monocular Direct Visual-Inertial Odometry
    Feng, Zheyu
    Li, Jianwen
    Zhang, Lundong
    Chen, Chen
    SENSORS, 2019, 19 (10):
  • [33] Monocular Visual-Inertial Odometry Based on Sparse Feature Selection with Adaptive Grid
    Cai, Zhiao
    Yang, Ming
    Wang, Chunxiang
    Wang, Bing
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1842 - 1847
  • [34] Stereo visual-inertial odometry using structural lines for localizing indoor wheeled robots
    Tang, Yanfeng
    Wei, Chenchen
    Cheng, Shoulong
    Huang, Zhi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (05)
  • [35] Vehicle Positioning in GNSS-Deprived Urban Areas by Stereo Visual-Inertial Odometry
    Ramezani, Milad
    Khoshelham, Kourosh
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2018, 3 (02): : 208 - 217
  • [36] Monocular Visual-Inertial Odometry for Agricultural Environments
    Song, Kaiyu
    Li, Jingtao
    Qiu, Run
    Yang, Gaidi
    IEEE Access, 2022, 10 : 103975 - 103986
  • [37] A Partial Sparsification Scheme for Visual-Inertial Odometry
    Zhu, Zhikai
    Wang, Wei
    2020 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2020, : 1983 - 1989
  • [38] Unsupervised Monocular Visual-inertial Odometry Network
    Wei, Peng
    Hua, Guoliang
    Huang, Weibo
    Meng, Fanyang
    Liu, Hong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2347 - 2354
  • [39] ADVIO: An Authentic Dataset for Visual-Inertial Odometry
    Cortes, Santiago
    Solin, Arno
    Rahtu, Esa
    Kannala, Juho
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 425 - 440
  • [40] Visual-Inertial Odometry with Point and Line Features
    Yang, Yulin
    Geneva, Patrick
    Eckenhoff, Kevin
    Huang, Guoquan
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 2447 - 2454