Direct Sparse Stereo Visual-Inertial Global Odometry

被引:5
|
作者
Wang, Ziqiang [1 ]
Li, Mei [1 ]
Zhou, Dingkun [1 ]
Zheng, Ziqiang [1 ]
机构
[1] UISEE Shanghai Automot Technol LTD, Shanghai 201800, Peoples R China
关键词
KALMAN FILTER; VERSATILE; ROBUST;
D O I
10.1109/ICRA48506.2021.9561410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust and accurate localization plays a key role in autonomous driving and robot applications. To utilize the complementary properties of different sensors, we present a novel tightly-coupled approach to combine the local (stereo cameras, IMU) and global sensors (magnetometer, GNSS). We jointly optimize all the model parameters through one active window. The visual part integrates constraints from static stereo into the photometric bundle adjustment pipeline of dynamic multiview stereo. Accumulating IMU information between keyframes, magnetometer and GNSS measurements are all inserted into the active window as additional constrains among all the keyframes. Through these, our method can realize globally drift-free and locally accurate state estimation. We evaluate the effectiveness of our system on public datasets under with real-world experiments.
引用
收藏
页码:14403 / 14409
页数:7
相关论文
共 50 条
  • [1] Joint optimization based on direct sparse stereo visual-inertial odometry
    Shuhuan Wen
    Yanfang Zhao
    Hong Zhang
    Hak Keung Lam
    Luigi Manfredi
    Autonomous Robots, 2020, 44 : 791 - 809
  • [2] Joint optimization based on direct sparse stereo visual-inertial odometry
    Wen, Shuhuan
    Zhao, Yanfang
    Zhang, Hong
    Lam, Hak Keung
    Manfredi, Luigi
    AUTONOMOUS ROBOTS, 2020, 44 (05) : 791 - 809
  • [3] Direct Visual-Inertial Odometry with Stereo Cameras
    Usenko, Vladyslav
    Engel, Jakob
    Stueckler, Joerg
    Cremers, Daniel
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1885 - 1892
  • [4] Direct Sparse Visual-Inertial Odometry using Dynamic Marginalization
    von Stumberg, Lukas
    Usenko, Vladyslav
    Cremers, Daniel
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 2510 - 2517
  • [5] A Fast Stereo Visual-Inertial Odometry for MAVs
    Bi, Yingcai
    Lai, Shupeng
    Chen, Ben M.
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2018, : 265 - 270
  • [6] ESVO2: Direct Visual-Inertial Odometry With Stereo Event Cameras
    Niu, Junkai
    Zhong, Sheng
    Lu, Xiuyuan
    Shen, Shaojie
    Gallego, Guillermo
    Zhou, Yi
    IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 : 2164 - 2183
  • [7] Stereo Event-Based Visual-Inertial Odometry
    Wang, Kunfeng
    Zhao, Kaichun
    Lu, Wenshuai
    You, Zheng
    SENSORS, 2025, 25 (03)
  • [8] A Stereo-Based Visual-Inertial Odometry for SLAM
    Li, Yong
    Lang, ShiBing
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 594 - 598
  • [9] UniVIO: Unified Direct and Feature-Based Underwater Stereo Visual-Inertial Odometry
    Miao, Ruihang
    Qian, Jiuchao
    Song, Yang
    Ying, Rendong
    Liu, Peilin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [10] UniVIO: Unified Direct and Feature-Based Underwater Stereo Visual-Inertial Odometry
    Miao, Ruihang
    Qian, Jiuchao
    Song, Yang
    Ying, Rendong
    Liu, Peilin
    IEEE Transactions on Instrumentation and Measurement, 2022, 71