Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions

被引:272
作者
Chu, Hyunwon [1 ]
Noh, Hyungjun [1 ]
Kim, Yun-Jung [1 ]
Yuk, Seongmin [1 ]
Lee, Ju-Hyuk [1 ]
Lee, Jinhong [1 ]
Kwack, Hobeom [1 ]
Kim, YunKyoung [2 ]
Yang, Doo-Kyung [2 ]
Kim, Hee-Tak [1 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, 291 Daehak Ro, Daejeon 34141, South Korea
[2] LG Chem, LG Sci Pk E6 Block,30 Magokjungang 10 Ro, Seoul 07796, South Korea
[3] Korea Adv Inst Sci & Technol, KAIST Inst NanoCentury, Adv Battery Ctr, 335 Gwahangno, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
LI-S BATTERIES; LI-O-2; BATTERY; HIGH-CAPACITY; CATHODE; GRAPHENE; POLYSULFIDES; PERFORMANCE; SURFACE; SALT; ELECTRODES;
D O I
10.1038/s41467-018-07975-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Uncontrolled growth of insulating lithium sulfide leads to passivation of sulfur cathodes, which limits high sulfur utilization in lithium-sulfur batteries. Sulfur utilization can be augmented in electrolytes based on solvents with high Gutmann Donor Number; however, violent lithium metal corrosion is a drawback. Here we report that particulate lithium sulfide growth can be achieved using a salt anion with a high donor number, such as bromide or triflate. The use of bromide leads to similar to 95 % sulfur utilization by suppressing electrode passivation. More importantly, the electrolytes with high-donor-number salt anions are notably compatible with lithium metal electrodes. The approach enables a high sulfur-loaded cell with areal capacity higher than 4mA h cm-2 and high sulfur utilization (> 90 %). This work offers a simple but practical strategy to modulate lithium sulfide growth, while conserving stability for high-performance lithium-sulfur batteries.
引用
收藏
页数:12
相关论文
共 77 条
  • [1] Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge
    Adams, Brian D.
    Radtke, Claudio
    Black, Robert
    Trudeau, Michel L.
    Zaghib, Karim
    Nazar, Linda F.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1772 - 1778
  • [2] Aetukuri NB, 2015, NAT CHEM, V7, P50, DOI [10.1038/NCHEM.2132, 10.1038/nchem.2132]
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [5] Aurbach D, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.128, 10.1038/NENERGY.2016.128]
  • [6] On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries
    Aurbach, Doron
    Pollak, Elad
    Elazari, Ran
    Salitra, Gregory
    Kelley, C. Scordilis
    Affinito, John
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) : A694 - A702
  • [7] Design of Battery Electrodes with Dual-Scale Porosity to Minimize Tortuosity and Maximize Performance
    Bae, Chang-Jun
    Erdonmez, Can K.
    Halloran, John W.
    Chiang, Yet-Ming
    [J]. ADVANCED MATERIALS, 2013, 25 (09) : 1254 - 1258
  • [8] New insights into the limiting parameters of the Li/S rechargeable cell
    Barchasz, Celine
    Lepretre, Jean-Claude
    Alloin, Fannie
    Patoux, Sebastien
    [J]. JOURNAL OF POWER SOURCES, 2012, 199 : 322 - 330
  • [9] KINETICS OF ELECTROCRYSTALLIZATION OF THIN FILMS OF CALOMEL
    BEWICK, A
    THIRSK, HR
    FLEISCHMANN, M
    [J]. TRANSACTIONS OF THE FARADAY SOCIETY, 1962, 58 (479): : 2200 - &
  • [10] Bin L, 2017, ADV ENERGY MATER, V7