On spherical codes with inner products in a prescribed interval

被引:5
|
作者
Boyvalenkov, P. G. [1 ,2 ]
Dragnev, P. D. [3 ]
Hardin, D. P. [4 ]
Saff, E. B. [4 ]
Stoyanova, M. M. [5 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, 8 G Bonchev Str, BU-1113 Sofia, Bulgaria
[2] South Western Univ, Blagoevgrad, Bulgaria
[3] Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[4] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
[5] Sofia Univ, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家科学基金会;
关键词
Spherical codes; Linear programming; Bounds for codes; H-energy of a code; ENERGY; BOUNDS;
D O I
10.1007/s10623-018-0524-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a framework for obtaining linear programming bounds for spherical codes whose inner products belong to a prescribed subinterval [,s] of [-1,1). An intricate relationship between Levenshtein-type upper bounds on cardinality of codes with inner products in [,s] and lower bounds on the potential energy (for absolutely monotone interactions) for codes with inner products in [,1) (when the cardinality of the code is kept fixed) is revealed and explained. Thereby, we obtain a new extension of Levenshtein bounds for such codes. The universality of our bounds is exhibited by a unified derivation and their validity for a wide range of codes and potential functions.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 50 条
  • [41] Upper bounds for energies of spherical codes of given cardinality and separation
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (09) : 1811 - 1826
  • [42] Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps
    Bachoc, Christine
    Vallentin, Frank
    EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (03) : 625 - 637
  • [43] The smallest length of eight-dimensional binary linear codes with prescribed minimum distance
    Bouyukliev, I
    Jaffe, DB
    Vavrek, V
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1539 - 1544
  • [44] Differential Unitary Space-Time Constellations From Spherical Codes
    Attiah, Kareem M.
    Seddik, Karim
    Gohary, Ramy H.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (11) : 1909 - 1913
  • [45] Bounds for codes in products of spaces, Grassmann and Stiefel manifolds
    Bachoe, Christine
    Ben-Haim, Yael
    Litsyn, Simon
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (03) : 1024 - 1035
  • [46] MONOTONICITY OF NONPLURIPOLAR PRODUCTS AND COMPLEX MONGE-AMPERE EQUATIONS WITH PRESCRIBED SINGULARITY
    Darvas, Tamas
    Di Nezza, Eleonora
    Lu, Chinh H.
    ANALYSIS & PDE, 2018, 11 (08): : 2049 - 2087
  • [47] Group Frames With Few Distinct Inner Products and Low Coherence
    Thill, Matthew
    Hassibi, Babak
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (19) : 5222 - 5237
  • [48] Two Approaches to Inner Estimations of the Optimal Solution Set in Interval Linear Programming
    Hladik, Milan
    2020 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2020), 2020, : 99 - 104
  • [49] Products of members of Lucas sequences with indices in an interval being a power
    Luca, Florian
    Shorey, T. N.
    JOURNAL OF NUMBER THEORY, 2009, 129 (02) : 303 - 315
  • [50] Analogs of Steiner's porism and Soddy's hexlet in higher dimensions via spherical codes
    Musin, Oleg R.
    ARCHIV DER MATHEMATIK, 2018, 111 (05) : 493 - 501