On spherical codes with inner products in a prescribed interval

被引:5
|
作者
Boyvalenkov, P. G. [1 ,2 ]
Dragnev, P. D. [3 ]
Hardin, D. P. [4 ]
Saff, E. B. [4 ]
Stoyanova, M. M. [5 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, 8 G Bonchev Str, BU-1113 Sofia, Bulgaria
[2] South Western Univ, Blagoevgrad, Bulgaria
[3] Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[4] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
[5] Sofia Univ, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家科学基金会;
关键词
Spherical codes; Linear programming; Bounds for codes; H-energy of a code; ENERGY; BOUNDS;
D O I
10.1007/s10623-018-0524-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a framework for obtaining linear programming bounds for spherical codes whose inner products belong to a prescribed subinterval [,s] of [-1,1). An intricate relationship between Levenshtein-type upper bounds on cardinality of codes with inner products in [,s] and lower bounds on the potential energy (for absolutely monotone interactions) for codes with inner products in [,1) (when the cardinality of the code is kept fixed) is revealed and explained. Thereby, we obtain a new extension of Levenshtein bounds for such codes. The universality of our bounds is exhibited by a unified derivation and their validity for a wide range of codes and potential functions.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 50 条
  • [31] SPHERICAL CODES GENERATED BY BINARY PARTITIONS OF SYMMETRICAL POINTSETS
    ERICSON, T
    ZINOVIEV, V
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) : 107 - 129
  • [32] Universal Lower Bounds for Potential Energy of Spherical Codes
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Constructive Approximation, 2016, 44 : 385 - 415
  • [33] Universal Lower Bounds for Potential Energy of Spherical Codes
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 385 - 415
  • [34] Improved Delsarte bounds for spherical codes in small dimensions
    Pfender, Florian
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (06) : 1133 - 1147
  • [35] Nearly orthogonal vectors and small antipodal spherical codes
    Bukh, Boris
    Cox, Christopher
    ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (01) : 359 - 388
  • [36] Structured Spherical Codes With Asymptotically Optimal Distance Distributions
    Taylor, Robert M., Jr.
    Mili, Lamine
    Zaghloul, Amir
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2188 - 2192
  • [37] POLYNOMIAL-TIME CONSTRUCTION OF CODES .2. SPHERICAL CODES AND THE KISSING NUMBER OF SPHERES
    LAUCHAUD, G
    STERN, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (04) : 1140 - 1146
  • [38] Rationality of the inner products of spherical s-distance t-designs for t ≥2s-2, s ≥ 3
    Boyvalenkov, Peter
    Nozaki, Hiroshi
    Safaei, Navid
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 646 : 107 - 118
  • [39] Upper bounds for energies of spherical codes of given cardinality and separation
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Designs, Codes and Cryptography, 2020, 88 : 1811 - 1826
  • [40] Spherical codes, maximal local packing density, and the golden ratio
    Hopkins, Adam B.
    Stillinger, Frank H.
    Torquato, Salvatore
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)