On spherical codes with inner products in a prescribed interval

被引:5
|
作者
Boyvalenkov, P. G. [1 ,2 ]
Dragnev, P. D. [3 ]
Hardin, D. P. [4 ]
Saff, E. B. [4 ]
Stoyanova, M. M. [5 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, 8 G Bonchev Str, BU-1113 Sofia, Bulgaria
[2] South Western Univ, Blagoevgrad, Bulgaria
[3] Purdue Univ, Dept Math Sci, Ft Wayne, IN 46805 USA
[4] Vanderbilt Univ, Dept Math, Ctr Construct Approximat, Nashville, TN 37240 USA
[5] Sofia Univ, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
基金
美国国家科学基金会;
关键词
Spherical codes; Linear programming; Bounds for codes; H-energy of a code; ENERGY; BOUNDS;
D O I
10.1007/s10623-018-0524-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We develop a framework for obtaining linear programming bounds for spherical codes whose inner products belong to a prescribed subinterval [,s] of [-1,1). An intricate relationship between Levenshtein-type upper bounds on cardinality of codes with inner products in [,s] and lower bounds on the potential energy (for absolutely monotone interactions) for codes with inner products in [,1) (when the cardinality of the code is kept fixed) is revealed and explained. Thereby, we obtain a new extension of Levenshtein bounds for such codes. The universality of our bounds is exhibited by a unified derivation and their validity for a wide range of codes and potential functions.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 50 条
  • [1] On spherical codes with inner products in a prescribed interval
    P. G. Boyvalenkov
    P. D. Dragnev
    D. P. Hardin
    E. B. Saff
    M. M. Stoyanova
    Designs, Codes and Cryptography, 2019, 87 : 299 - 315
  • [2] Complex spherical codes with two inner products
    Nozaki, Hiroshi
    Suda, Sho
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 511 - 518
  • [3] Complex Spherical Codes with Three Inner Products
    Nozaki, Hiroshi
    Suda, Sho
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (02) : 294 - 317
  • [4] BOUNDS FOR SPHERICAL CODES: THE LEVENSHTEIN FRAMEWORK LIFTED
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1323 - 1356
  • [5] On polarization of spherical codes and designs
    Boyvalenkov, P. G.
    Dragnev, P. D.
    Hardin, D. P.
    Saff, E. B.
    Stoyanova, M. M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (01)
  • [6] Flat Tori, Lattices and Spherical Codes
    Costa, Sueli I. R.
    Torezzan, Cristiano
    Campello, Antonio
    Vaishampayan, Vinay A.
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [7] Submodule codes as spherical codes in buildings
    Mima Stanojkovski
    Designs, Codes and Cryptography, 2023, 91 : 2449 - 2472
  • [8] Submodule codes as spherical codes in buildings
    Stanojkovski, Mima
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (07) : 2449 - 2472
  • [9] Asymptotically dense spherical codes .1. Wrapped spherical codes
    Hamkins, J
    Zeger, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1774 - 1785
  • [10] Asymptotically dense spherical codes .2. Laminated spherical codes
    Hamkins, J
    Zeger, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) : 1786 - 1798