Some identities for multiple zeta values

被引:24
作者
Shen, Zhongyan [1 ,2 ]
Cai, Tianxin [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Int Study Univ, Dept Math, Hangzhou 310012, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple zeta values; Harmonic shuffle relation; Bernoulli numbers;
D O I
10.1016/j.jnt.2011.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we obtain the following identities, Sigma(a+b+c=n) zeta(2a, 2b, 2c) = 5/8 zeta(2n) - 1/4 zeta(2)zeta(2n - 2), for n > 2, Sigma(a+b+c+d=n) zeta(2a, 2b, 2c, 2d) = 35/64 zeta(2n) - 5/16 zeta(2)zeta(2n - 2), for n > 3. Meanwhile, some weighted version of sum formulas are also obtained. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 323
页数:10
相关论文
共 7 条
[1]   Extended Zeilberger's algorithm for identities on Bernoulli and Euler polynomials [J].
Chen, William Y. C. ;
Sun, Lisa H. .
JOURNAL OF NUMBER THEORY, 2009, 129 (09) :2111-2132
[3]   Double zeta values and modular forms [J].
Gangl, H ;
Kaneko, M ;
Zagier, D .
AUTOMORPHIC FORMS AND ZETA FUNCTIONS, 2006, :71-+
[4]  
Granville A., 1997, London Mathematical Society Lecture Note Series, V247, P95
[5]   Weighted sum formula for multiple zeta values [J].
Guo, Li ;
Xie, Bingyong .
JOURNAL OF NUMBER THEORY, 2009, 129 (11) :2747-2765
[6]  
Nakamura T., 2009, SIAULIAI MATH SEMIN, V4, P151
[7]  
Ohno Y, 2008, COMMUN NUMBER THEORY, V2, P325