A study on the thermal resistance over metal-carbon nanotube interface by molecular dynamics simulation

被引:6
作者
Zhang, Da [1 ]
Tang, Yuanzheng [1 ]
Wang, Song [1 ]
Lin, Han [1 ]
He, Yan [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Electromech Engn, Shandong Engn Lab Preparat & Applicat Highperform, Qingdao 266061, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics simulation; metal-carbon nanotube interface; interfacial thermal resistance; vibrational density of states (VDOS); HEAT-CONDUCTION; CNT; EVAPORATION; TRANSPORT;
D O I
10.1080/09276440.2021.2024114
中图分类号
TB33 [复合材料];
学科分类号
摘要
The interfacial thermal resistance between adjacent parts is important in the thermal management of micro/nano-scale systems. In this paper, the temperature difference and heat flow methods are adopted to study the interfacial thermal resistance between the smooth surface of metal and the end of carbon nanotube (CNT) by molecular dynamics simulation. The effects of metal type, CNT diameter, and mean interfacial temperature on the interfacial thermal resistance are studied in detail, with the temperature and heat flow conditions applied to the two metal atom groups of a dumbbell-shaped metal-CNT-metal model. For a certain metal type, the diameter and temperature dependences of the interfacial thermal resistance obtained from both the temperature difference and heat flow methods are consistent, the interfacial thermal resistance decreases with increase of CNT diameter exponentially, and the thermal rectification occurs due to different interfacial temperatures. The thermal transfer mechanism at the metal-CNT interface is quantitatively analyzed by calculating the overlap area of the normalized vibrational density of states. The results of this paper will provide in-depth theoretical insights into the heat transfer enhancement at nano-scale interface.
引用
收藏
页码:899 / 913
页数:15
相关论文
共 38 条
[21]   Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids [J].
Sarkara, Suranjan ;
Selvam, R. Panneer .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (07)
[22]   Molecular Dynamics Simulation of Normal and Explosive Boiling on Nanostructured Surface [J].
Seyf, Hamid Reza ;
Zhang, Yuwen ;
Dowell, James C. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2013, 135 (12)
[23]   Effect of nanotextured array of conical features on explosive boiling over a flat substrate: A nonequilibrium molecular dynamics study [J].
Seyf, Hamid Reza ;
Zhang, Yuwen .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 66 :613-624
[24]   Molecular dynamics study of effect of different wetting conditions on evaporation and rapid boiling of ultra-thin argon layer over platinum surface [J].
Shavik, S. M. ;
Hasan, Mohammad Nasim ;
Morshed, A. K. M. Monjur ;
Islam, M. Quamrul .
6th BSME International Conference on Thermal Engineering, 2015, 105 :446-451
[25]   Role of thermal boundary resistance on the heat flow in carbon-nanotube composites [J].
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Keblinski, P ;
Cahill, DG .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (12) :8136-8144
[26]   Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations [J].
Shiomi, Junichiro ;
Maruyama, Shigeo .
PHYSICAL REVIEW B, 2006, 73 (20)
[27]   MODELING SOLID-STATE CHEMISTRY - INTERATOMIC POTENTIALS FOR MULTICOMPONENT SYSTEMS [J].
TERSOFF, J .
PHYSICAL REVIEW B, 1989, 39 (08) :5566-5568
[28]   Interfacial thermal conductance limit and thermal rectification across vertical carbon nanotube/graphene nanoribbon-silicon interfaces [J].
Vallabhaneni, Ajit K. ;
Qiu, Bo ;
Hu, Jiuning ;
Chen, Yong P. ;
Roy, Ajit K. ;
Ruan, Xiulin .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (06)
[29]   Modeling of Thermal Conductance at Transverse CNT-CNT Interfaces [J].
Varshney, Vikas ;
Patnaik, Soumya S. ;
Roy, Ajit K. ;
Farmer, Barry L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (39) :16223-16228
[30]   Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate [J].
Wang, Weidong ;
Zhang, Haiyan ;
Tian, Conghui ;
Meng, Xiaojie .
NANOSCALE RESEARCH LETTERS, 2015, 10