Experimental investigation of the uncertainty principle for radial degrees of freedom

被引:4
作者
Zhang, Zhihe [1 ,2 ]
Zhang, Dongkai [1 ,2 ]
Qiu, Xiaodong [1 ,2 ]
Chen, Yuanyuan [1 ,2 ]
Franke-Arnold, Sonja [3 ]
Chen, Lixiang [1 ,2 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Peoples R China
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金;
关键词
ANGULAR-MOMENTUM; OPERATOR; STATES;
D O I
10.1364/PRJ.443691
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
While the uncertainty principle for linear position and linear momentum, and more recently for angular position and angular momentum, is well established, its radial equivalent has so far eluded researchers. Here we exploit the logarithmic radial position, ln r, and hyperbolic momentum, PH, to formulate a rigorous uncertainty principle for the radial degree of freedom of transverse light modes. We show that the product of their uncertainties is bounded by Planck's constant, Delta In r. Delta P-H >= h/2, and identify a set of radial intelligent states that satisfy the equality. We illustrate the radial uncertainty principle for a variety of intelligent states, by preparing transverse light modes with suitable radial profiles. We use eigenmode projection to measure the corresponding hyperbolic momenta, confirming the minimum uncertainty bound. Optical systems are most naturally described in terms of cylindrical coordinates, and our radial uncertainty relation provides the missing piece in characterizing optical quantum measurements, providing a new platform for the fundamental tests and applications of quantum optics. (c) 2022 Chinese Laser Press
引用
收藏
页码:2223 / 2228
页数:6
相关论文
共 35 条
[21]   Radial diffraction of light in the radial momentum state space [J].
Ma, Tianlong ;
Zhang, Dongkai ;
Qiu, Xiaodong ;
Chen, Yuanyuan ;
Chen, Lixiang .
OPTICS LETTERS, 2020, 45 (18) :5152-5155
[22]   Entanglement of the orbital angular momentum states of photons [J].
Mair, A ;
Vaziri, A ;
Weihs, G ;
Zeilinger, A .
NATURE, 2001, 412 (6844) :313-316
[23]  
Merzbacher E., 1961, Quantum Mechanics
[24]   Pixel entanglement:: Experimental realization of optically entangled d=3 and d=6 qudits -: art. no. 220501 [J].
O'Sullivan-Hale, MN ;
Khan, IA ;
Boyd, RW ;
Howell, JC .
PHYSICAL REVIEW LETTERS, 2005, 94 (22)
[25]   The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics [J].
Oppenheim, Jonathan ;
Wehner, Stephanie .
SCIENCE, 2010, 330 (6007) :1072-1074
[26]   The non-self-adjointness of the radial momentum operator in n dimensions [J].
Paz, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (16) :3727-3731
[27]   Physical meaning of the radial index of Laguerre-Gauss beams [J].
Plick, William N. ;
Krenn, Mario .
PHYSICAL REVIEW A, 2015, 92 (06)
[28]   Optimisation of arbitrary light beam generation with spatial light modulators [J].
Radwell, Neal ;
Offer, Rachel F. ;
Selyem, Adam ;
Franke-Arnold, Sonja .
JOURNAL OF OPTICS, 2017, 19 (09)
[29]   The uncertainty principle [J].
Robertson, HP .
PHYSICAL REVIEW, 1929, 34 (01) :163-164
[30]   GENERALIZED MOMENTUM OPERATORS IN QUANTUM MECHANICS [J].
ROBINSON, PD ;
HIRSCHFELDER, JO .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (03) :338-&