Experimental investigation of the uncertainty principle for radial degrees of freedom

被引:4
作者
Zhang, Zhihe [1 ,2 ]
Zhang, Dongkai [1 ,2 ]
Qiu, Xiaodong [1 ,2 ]
Chen, Yuanyuan [1 ,2 ]
Franke-Arnold, Sonja [3 ]
Chen, Lixiang [1 ,2 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Collaborat Innovat Ctr Optoelect Semicond & Effic, Xiamen 361005, Peoples R China
[3] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow G12 8QQ, Scotland
基金
中国国家自然科学基金;
关键词
ANGULAR-MOMENTUM; OPERATOR; STATES;
D O I
10.1364/PRJ.443691
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
While the uncertainty principle for linear position and linear momentum, and more recently for angular position and angular momentum, is well established, its radial equivalent has so far eluded researchers. Here we exploit the logarithmic radial position, ln r, and hyperbolic momentum, PH, to formulate a rigorous uncertainty principle for the radial degree of freedom of transverse light modes. We show that the product of their uncertainties is bounded by Planck's constant, Delta In r. Delta P-H >= h/2, and identify a set of radial intelligent states that satisfy the equality. We illustrate the radial uncertainty principle for a variety of intelligent states, by preparing transverse light modes with suitable radial profiles. We use eigenmode projection to measure the corresponding hyperbolic momenta, confirming the minimum uncertainty bound. Optical systems are most naturally described in terms of cylindrical coordinates, and our radial uncertainty relation provides the missing piece in characterizing optical quantum measurements, providing a new platform for the fundamental tests and applications of quantum optics. (c) 2022 Chinese Laser Press
引用
收藏
页码:2223 / 2228
页数:6
相关论文
共 35 条
[1]  
[Anonymous], SCIENCE
[2]   Operator domains and self-adjoint operators [J].
Araujo, VS ;
Coutinho, FAB ;
Perez, JF .
AMERICAN JOURNAL OF PHYSICS, 2004, 72 (02) :203-213
[3]   Radial mask for imaging systems that exhibit high resolution and extended depths of field [J].
Ben-Eliezer, E ;
Marom, E ;
Konforti, N ;
Zalevsky, Z .
APPLIED OPTICS, 2006, 45 (09) :2001-2013
[4]   Self-adjoint extensions of operators and the teaching of quantum mechanics [J].
Bonneau, G ;
Faraut, J ;
Valent, G .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (03) :322-331
[5]   Observation of subluminal twisted light in vacuum [J].
Bouchard, Frederic ;
Harris, Jeremie ;
Mand, Harjaspreet ;
Boyd, Robert W. ;
Karimi, Ebrahim .
OPTICA, 2016, 3 (04) :351-354
[6]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[7]   Realization of the Einstein-Podolsky-Rosen Paradox Using Radial Position and Radial Momentum Variables [J].
Chen, Lixiang ;
Ma, Tianlong ;
Qiu, Xiaodong ;
Zhang, Dongkai ;
Zhang, Wuhong ;
Boyd, Robert W. .
PHYSICAL REVIEW LETTERS, 2019, 123 (06)
[8]   Photonic polarization gears for ultra-sensitive angular measurements [J].
D'Ambrosio, Vincenzo ;
Spagnolo, Nicolo ;
Del Re, Lorenzo ;
Slussarenko, Sergei ;
Li, Ying ;
Kwek, Leong Chuan ;
Marrucci, Lorenzo ;
Walborn, Stephen P. ;
Aolita, Leandro ;
Sciarrino, Fabio .
NATURE COMMUNICATIONS, 2013, 4
[9]  
Dirac P.A.M., 1981, The Principles of Quantum Mechanics
[10]   Uncertainty principle for angular position and angular momentum [J].
Franke-Arnold, S ;
Barnett, SM ;
Yao, E ;
Leach, J ;
Courtial, J ;
Padgett, M .
NEW JOURNAL OF PHYSICS, 2004, 6 :1-8