Modified linear regression predicts drug-target interactions accurately

被引:17
作者
Buza, Krisztian [1 ,2 ]
Peska, Ladislav [3 ]
Koller, Julia [4 ]
机构
[1] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
[2] Babes Bolyai Univ, Ctr Study Complex, Cluj Napoca, Romania
[3] Charles Univ Prague, Fac Math & Phys, Dept Software Engn, Prague, Czech Republic
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
INFORMATION; MUTATIONS; IDENTIFICATION; HYPERTENSION; INTEGRATION; INHIBITOR; KERNELS;
D O I
10.1371/journal.pone.0230726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.
引用
收藏
页数:18
相关论文
共 49 条
[31]   Drug-target interaction prediction by learning from local information and neighbors [J].
Mei, Jian-Ping ;
Kwoh, Chee-Keong ;
Yang, Peng ;
Li, Xiao-Li ;
Zheng, Jie .
BIOINFORMATICS, 2013, 29 (02) :238-245
[32]   The cost of drug development: A systematic review [J].
Morgan, Steve ;
Grootendorst, Paul ;
Lexchin, Joel ;
Cunningham, Colleen ;
Greyson, Devon .
HEALTH POLICY, 2011, 100 (01) :4-17
[33]   Toward more realistic drug-target interaction predictions [J].
Pahikkala, Tapio ;
Airola, Antti ;
Pietila, Sami ;
Shakyawar, Sushil ;
Szwajda, Agnieszka ;
Tang, Jing ;
Aittokallio, Tero .
BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) :325-337
[34]   Insights into an Original Pocket-Ligand Pair Classification: A Promising Tool for Ligand Profile Prediction [J].
Perot, Stephanie ;
Regad, Leslie ;
Reynes, Christelle ;
Sperandio, Olivier ;
Miteva, Maria A. ;
Villoutreix, Bruno O. ;
Camproux, Anne-Claude .
PLOS ONE, 2013, 8 (06)
[35]   Drug-target interaction prediction: A Bayesian ranking approach [J].
Peska, Ladislav ;
Buza, Krisztian ;
Koller, Julia .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 :15-21
[36]   ABC Transport Proteins in Cardiovascular Disease-A Brief Summary [J].
Schumacher, Toni ;
Benndorf, Ralf A. .
MOLECULES, 2017, 22 (04)
[37]   Comprehensible Models for Predicting Molecular Interaction with Heart-Regulating Genes [J].
Sonstrod, Cecilia ;
Johansson, Ulf ;
Norinder, Ulf ;
Bostrom, Henrik .
SEVENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2008, :559-+
[38]   Development of Pulmonary Hypertension During Treatment with Diazoxide: A Case Series and Literature Review [J].
Timlin, Matthew R. ;
Black, Alexander B. ;
Delaney, Heather M. ;
Matos, Renee I. ;
Percival, Candace S. .
PEDIATRIC CARDIOLOGY, 2017, 38 (06) :1247-1250
[39]   Ligand Affinity Prediction with Multi-pattern Kernels [J].
Ullrich, Katrin ;
Mack, Jennifer ;
Welke, Pascal .
DISCOVERY SCIENCE, (DS 2016), 2016, 9956 :474-489
[40]   Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile [J].
van Laarhoven, Twan ;
Marchiori, Elena .
PLOS ONE, 2013, 8 (06)