Modified linear regression predicts drug-target interactions accurately

被引:17
作者
Buza, Krisztian [1 ,2 ]
Peska, Ladislav [3 ]
Koller, Julia [4 ]
机构
[1] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
[2] Babes Bolyai Univ, Ctr Study Complex, Cluj Napoca, Romania
[3] Charles Univ Prague, Fac Math & Phys, Dept Software Engn, Prague, Czech Republic
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
INFORMATION; MUTATIONS; IDENTIFICATION; HYPERTENSION; INTEGRATION; INHIBITOR; KERNELS;
D O I
10.1371/journal.pone.0230726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.
引用
收藏
页数:18
相关论文
共 49 条
[11]   Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference [J].
Cheng, Feixiong ;
Liu, Chuang ;
Jiang, Jing ;
Lu, Weiqiang ;
Li, Weihua ;
Liu, Guixia ;
Zhou, Weixing ;
Huang, Jin ;
Tang, Yun .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
[12]   Episodic coronary artery vasospasm and hypertension develop in the absence of Sur2 KATP channels [J].
Chutkow, WA ;
Pu, JL ;
Wheeler, MT ;
Wada, T ;
Makielski, JC ;
Burant, CF ;
McNally, EM .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 110 (02) :203-208
[13]  
Davis J., 2007, 24 INT C MACH LEARN, P217
[14]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[15]   Identification of drug-side effect association via multiple information integration with centered kernel alignment [J].
Ding, Yijie ;
Tang, Jijun ;
Guo, Fei .
NEUROCOMPUTING, 2019, 325 :211-224
[16]   Neighborhood Constraint Matrix Completion for Drug-Target Interaction Prediction [J].
Fan, Xin ;
Hong, Yuxiang ;
Liu, Xiaohu ;
Zhang, Yaogong ;
Xie, Maoqiang .
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 :348-360
[17]   Linguistic feature analysis for protein interaction extraction [J].
Fayruzov, Timur ;
De Cock, Martine ;
Cornelis, Chris ;
Hoste, Veronique .
BMC BIOINFORMATICS, 2009, 10
[18]   Management of malignant insulinoma [J].
Ferrer-Garcia, J. C. ;
Iranzo Gonzalez-Cruz, V. ;
Navas-DeSolis, S. ;
Civera-Andres, M. ;
Morillas-Arino, C. ;
Merchante-Alfaro, A. ;
Caballero-Diaz, C. ;
Sanchez-Juan, C. ;
Camps Herrero, C. .
CLINICAL & TRANSLATIONAL ONCOLOGY, 2013, 15 (09) :725-731
[19]   Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization [J].
Gonen, Mehmet .
BIOINFORMATICS, 2012, 28 (18) :2304-2310
[20]   SuperTarget and Matador:: resources for exploring drug-target relationships [J].
Guenther, Stefan ;
Kuhn, Michael ;
Dunkel, Mathias ;
Campillos, Monica ;
Senger, Christian ;
Petsalaki, Evangelia ;
Ahmed, Jessica ;
Urdiales, Eduardo Garcia ;
Gewiess, Andreas ;
Jensen, Lars Juhl ;
Schneider, Reinhard ;
Skoblo, Roman ;
Russell, Robert B. ;
Bourne, Philip E. ;
Bork, Peer ;
Preissner, Robert .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D919-D922