Modified linear regression predicts drug-target interactions accurately

被引:17
作者
Buza, Krisztian [1 ,2 ]
Peska, Ladislav [3 ]
Koller, Julia [4 ]
机构
[1] Eotvos Lorand Univ, Fac Informat, Budapest, Hungary
[2] Babes Bolyai Univ, Ctr Study Complex, Cluj Napoca, Romania
[3] Charles Univ Prague, Fac Math & Phys, Dept Software Engn, Prague, Czech Republic
[4] Semmelweis Univ, Inst Genom Med & Rare Disorders, Budapest, Hungary
关键词
INFORMATION; MUTATIONS; IDENTIFICATION; HYPERTENSION; INTEGRATION; INHIBITOR; KERNELS;
D O I
10.1371/journal.pone.0230726
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
State-of-the-art approaches for the prediction of drug-target interactions (DTI) are based on various techniques, such as matrix factorisation, restricted Boltzmann machines, network-based inference and bipartite local models (BLM). In this paper, we propose the framework of Asymmetric Loss Models (ALM) which is more consistent with the underlying chemical reality compared with conventional regression techniques. Furthermore, we propose to use an asymmetric loss model with BLM to predict drug-target interactions accurately. We evaluate our approach on publicly available real-world drug-target interaction datasets. The results show that our approach outperforms state-of-the-art DTI techniques, including recent versions of BLM.
引用
收藏
页数:18
相关论文
共 49 条
[1]  
[Anonymous], 2009, Proceedings of the Third ACM Conference on Recommender Systems
[2]  
BANERJEE I., 2018, Diabetic Medicine
[3]   ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating [J].
Bienengraeber, M ;
Olson, TM ;
Selivanov, VA ;
Kathmann, EC ;
O'Cochlain, F ;
Gao, F ;
Karger, AB ;
Ballew, JD ;
Hodgson, DM ;
Zingman, LV ;
Pang, YP ;
Alekseev, AE ;
Terzic, A .
NATURE GENETICS, 2004, 36 (04) :382-387
[4]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[5]  
Bolgar Bence, 2016, J MACH LEARN RES, P25
[6]   ALADIN: A New Approach for Drug-Target Interaction Prediction [J].
Buza, Krisztian ;
Peska, Ladislav .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 :322-337
[7]   Drug-target interaction prediction with Bipartite Local Models and hubness-aware regression [J].
Buza, Krisztian ;
Peska, Ladislav .
NEUROCOMPUTING, 2017, 260 :284-293
[8]   Sequential Patterns to Discover and Characterise Biological Relations [J].
Cellier, Peggy ;
Charnois, Thierry ;
Plantevit, Marc .
COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2010, 6008 :537-+
[9]   Drug-target interaction prediction by random walk on the heterogeneous network [J].
Chen, Xing ;
Liu, Ming-Xi ;
Yan, Gui-Ying .
MOLECULAR BIOSYSTEMS, 2012, 8 (07) :1970-1978
[10]   Structure-based maximal affinity model predicts small-molecule druggability [J].
Cheng, Alan C. ;
Coleman, Ryan G. ;
Smyth, Kathleen T. ;
Cao, Qing ;
Soulard, Patricia ;
Caffrey, Daniel R. ;
Salzberg, Anna C. ;
Huang, Enoch S. .
NATURE BIOTECHNOLOGY, 2007, 25 (01) :71-75