LP-CAFFARELLI-KOHN-NIRENBERG TYPE INEQUALITIES ON HOMOGENEOUS GROUPS

被引:11
作者
Ozawa, Tohru [1 ]
Ruzhansky, Michael [2 ]
Suragan, Durvudkhan [3 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
[2] Imperial Coll London, Dept Math, 180 Queens Gate, London SW7 2AZ, England
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Astana 010000, Kazakhstan
基金
英国工程与自然科学研究理事会;
关键词
RELLICH INEQUALITIES; HARDY INEQUALITIES; REMAINDER;
D O I
10.1093/qmath/hay040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove L-P-Caffarelli-Kohn-Nirenberg type inequalities on homogeneous groups, which is one of most general subclasses of nilpotent Lie groups, all with sharp constants. We also discuss some of their consequences. Already in the Abelian cases of isotropic or anisotropic R-n, our results provide new conclusions in view of the arbitrariness of the choice of the not necessarily Euclidean quasi-norm.
引用
收藏
页码:305 / 318
页数:14
相关论文
共 26 条
[1]  
[Anonymous], 1982, Mathematical Notes, DOI DOI 10.1515/9780691222455
[2]   SOBOLEV INEQUALITIES WITH REMAINDER TERMS [J].
BREZIS, H ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (01) :73-86
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[5]  
Brezis H., 1997, Ann. Sc. Norm. Super. Pisa Cl. Sci., V25, P217
[6]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[7]  
Catrina F, 2001, COMMUN PUR APPL MATH, V54, P229, DOI 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO
[8]  
2-I
[9]   Hardy and uncertainty inequalities on stratified Lie groups [J].
Ciatti, Paolo ;
Cowling, Michael G. ;
Ricci, Fulvio .
ADVANCES IN MATHEMATICS, 2015, 277 :365-387
[10]   Some new and short proofs for a class of Caffarelli-Kohn-Nirenberg type inequalities [J].
Costa, David G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) :311-317