STATISTICAL PROPERTIES OF LINEAR FRACTAL INTERPOLATION FUNCTIONS FOR RANDOM DATA SETS

被引:9
作者
Luor, Dah-Chin [1 ]
机构
[1] I Shou Univ, Dept Financial & Computat Math, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
关键词
Fractals; Interpolation; Fractal Interpolation Functions; Random Data Sets; ITERATED FUNCTION SYSTEMS; DISCRETE SEQUENCES; APPROXIMATION; SIGNALS; SAMPLES; SPACES;
D O I
10.1142/S0218348X18500093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be an integer greater than or equal to 2 and let x'(i)s be numbers with x(0) < x(1) < x(2) < ...< x(N). Denote that I is the interval left perpendicularx(0), x(N)right perpendicular and Delta = {(x(k), mu(k)) is an element of R x R : k = 0, 1,..., N} is a set of points. Suppose that Y-k is a random perturbation of mu(k) for k = 0, 1,..., N, and we set Delta* = {(x(k), Y-k) : k = 0, 1,..., N}. Let f(Delta) and f(Delta*) be linear fractal interpolation functions on I corresponding to the set of points Delta and Delta*, respectively. The value f(Delta*)(x) is random for all x is an element of I. In this paper, we show that the expectation of f(Delta*)(x) is f(Delta)(x). We also establish estimations for the variance of f(Delta*)(x) and the expectation of |f(Delta*)(x) - f(Delta)(x)|.
引用
收藏
页数:6
相关论文
共 36 条
[1]   BOX DIMENSIONS OF α-FRACTAL FUNCTIONS [J].
Akhtar, Md. Nasim ;
Prasad, M. Guru Prem ;
Navascues, M. A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (03)
[2]  
Barnsley M., 1993, FRACTALS EVERYWHERE
[3]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[4]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[5]   Bilinear fractal interpolation and box dimension [J].
Barnsley, Michael F. ;
Massopust, Peter R. .
JOURNAL OF APPROXIMATION THEORY, 2015, 192 :362-378
[6]   ON THE WEIERSTRASS-MANDELBROT FRACTAL FUNCTION [J].
BERRY, MV ;
LEWIS, ZV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1980, 370 (1743) :459-484
[7]   RECOVERY OF RANDOMLY SAMPLED SIGNALS BY SIMPLE INTERPOLATORS [J].
BEUTLER, FJ .
INFORMATION AND CONTROL, 1974, 26 (04) :312-340
[8]   Stability of affine coalescence hidden variable fractal interpolation functions [J].
Chand, A. K. B. ;
Kapoor, G. P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) :3757-3770
[9]   Generalized cubic spline fractal interpolation functions [J].
Chand, A. K. B. ;
Kapoor, G. P. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :655-676
[10]   FRACTAL TRIGONOMETRIC POLYNOMIALS FOR RESTRICTED RANGE APPROXIMATION [J].
Chand, A. K. B. ;
Navascues, M. A. ;
Viswanathan, P. ;
Katiyar, S. K. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (02)