On the generalized cyclic Eilenberg-Zilber theorem

被引:16
作者
Khalkhali, M [1 ]
Rangipour, B [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2004年 / 47卷 / 01期
关键词
D O I
10.4153/CMB-2004-006-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the homological perturbation lemma to give an algebraic proof of the cyclic Efenberg-Zilber theorem for cylindrical modules.
引用
收藏
页码:38 / 48
页数:11
相关论文
共 13 条
[1]  
BAUVAL A, 1998, THEOREME EILENBERG Z
[2]   THE CYCLIC HOMOLOGY OF THE GROUP-RINGS [J].
BURGHELEA, D .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (03) :354-365
[3]  
CONNES A, 1983, CR ACAD SCI I-MATH, V296, P953
[4]  
Dold Albrecht, 1961, Anwendungen, Ann. Inst. Fourier, V11, P201
[5]  
Feigin B., 1987, LECT NOTES MATH, V1289
[6]  
GETZLER E, 1993, J REINE ANGEW MATH, V445, P161
[7]  
Goerss P. G., 1999, Simplicial Homotopy Theory, V174
[8]  
HOOD CE, 1987, K-THEORY, V1, P361
[9]   CYCLIC HOMOLOGY, COMODULES, AND MIXED COMPLEXES [J].
KASSEL, C .
JOURNAL OF ALGEBRA, 1987, 107 (01) :195-216
[10]  
KASSEL C, 1990, J REINE ANGEW MATH, V408, P159