Incremental End-to-End Learning for Lateral Control in Autonomous Driving

被引:7
作者
Kwon, Jaerock [1 ]
Khalil, Aws [1 ]
Kim, Donghyun [2 ]
Nam, Haewoon [2 ]
机构
[1] Univ Michigan Dearborn, Dept Elect & Comp Engn, Dearborn, MI 48128 USA
[2] Hanyang Univ, Div Elect Engn, Ansan 15588, South Korea
关键词
Training; Neural networks; Data collection; Vehicles; Automobiles; Cloning; Convolutional neural networks; Behavioral cloning; end-to-end learning; artificial intelligence; autonomous systems; intelligent systems; machine learning; neural networks; vehicle control;
D O I
10.1109/ACCESS.2022.3160655
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of high-quality data is required to complete the job of lateral control utilizing Behavioral Cloning (BC) through an End-to-End (E2E) learning system. The majority of E2E learning systems gather this high-quality data all at once before beginning the training phase (i.e., the training process does not start until the end of the data collection process). The demand for high-quality data necessitates a large amount of human effort and substantial time and money spent waiting for data collection to be completed. As a result, it is critical to find a viable option to reduce both the time and cost of data collecting while also maintaining the performance of a trained vehicle controller. This paper offers a novel behavioral cloning approach for lateral vehicle control to address the aforementioned problems. The proposed technique begins by collecting the least amount of human driving data possible. The data from human drivers are utilized for training a convolutional neural network for lateral control. The trained neural network is subsequently deployed to the vehicle's automated driving controller, replacing a human driver. At this point, a human driver is out of the loop, and an automated driving controller, trained by the initial data from a human driver, drives the vehicle to collect further training data. The driving data obtained are sent into a convolutional neural network training module, then the newly trained neural network is deployed to the automated driving controller that will drive the vehicle further. The data collection alternates neural network training processes using the collected data until the neural network learns to correctly associate an image input with a steering angle. The proposed incremental approach was extensively tested in simulated environments, and the results are promising, only 3.81% (1,061 out of 27,884) of the total data came from a human driver. The incrementally trained neural networks using data collected by automated controllers were able to drive the vehicle in two different tracks successfully. The AI chauffeur was able to drive the vehicle on Track B for more than 70% of the track even though it has not seen the track before.
引用
收藏
页码:33771 / 33786
页数:16
相关论文
共 50 条
[41]   Learning Stability Attention in Vision-based End-to-end Driving Policies [J].
Wang, Tsun-Hsuan ;
Xiao, Wei ;
Chahine, Makram ;
Amini, Alexander ;
Hasani, Ramin ;
Rus, Daniela .
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
[42]   AUPOD: End-to-End Automatic Poster Design by Self-Supervision [J].
Huang, Dongjin ;
Li, Jinyao ;
Liu, Chuanman ;
Liu, Jinhua .
IEEE ACCESS, 2022, 10 :47348-47360
[43]   End-to-End Multitask Learning With Vision Transformer [J].
Tian, Yingjie ;
Bai, Kunlong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) :9579-9590
[44]   An End-to-End Deep Learning Pipeline for Football Activity Recognition Based on Wearable Acceleration Sensors [J].
Cuperman, Rafael ;
Jansen, Kaspar M. B. ;
Ciszewski, Michal G. .
SENSORS, 2022, 22 (04)
[45]   End-to-End Learning of Speech 2D Feature-Trajectory for Prosthetic Hands [J].
Jafarzadeh, Mohsen ;
Tadesse, Yonas .
2020 SECOND INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI (TRANSAI 2020), 2020, :25-33
[46]   End-to-End Representation Learning for Chemical-Chemical Interaction Prediction [J].
Kwon, Sunyoung ;
Yoon, Sungroh .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (05) :1436-1447
[47]   Classification of ALS Point Clouds Using End-to-End Deep Learning [J].
Winiwarter, Lukas ;
Mandiburger, Gottfried ;
Schmohl, Stefan ;
Pfeifer, Norbert .
PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (03) :75-90
[48]   Review and Evaluation of End-to-End Video Compression with Deep-Learning [J].
Yasin, Hajar Maseeh ;
Ameen, Siddeeq Yosef .
2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, :81-88
[49]   FinSNet: End-to-End Separation of Overlapped Fingerprints Using Deep Learning [J].
Yoo, Dongheon ;
Cho, Jaebum ;
Lee, Juhyun ;
Chae, Minseok ;
Lee, Byounghyo ;
Lee, Byoungho .
IEEE ACCESS, 2020, 8 :209020-209029
[50]   End-to-end differentiable learning of turbulence models from indirect observations [J].
Strofer, Carlos A. Michelen ;
Xiao, Heng .
THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (04)