Incremental End-to-End Learning for Lateral Control in Autonomous Driving

被引:7
|
作者
Kwon, Jaerock [1 ]
Khalil, Aws [1 ]
Kim, Donghyun [2 ]
Nam, Haewoon [2 ]
机构
[1] Univ Michigan Dearborn, Dept Elect & Comp Engn, Dearborn, MI 48128 USA
[2] Hanyang Univ, Div Elect Engn, Ansan 15588, South Korea
关键词
Training; Neural networks; Data collection; Vehicles; Automobiles; Cloning; Convolutional neural networks; Behavioral cloning; end-to-end learning; artificial intelligence; autonomous systems; intelligent systems; machine learning; neural networks; vehicle control;
D O I
10.1109/ACCESS.2022.3160655
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The use of high-quality data is required to complete the job of lateral control utilizing Behavioral Cloning (BC) through an End-to-End (E2E) learning system. The majority of E2E learning systems gather this high-quality data all at once before beginning the training phase (i.e., the training process does not start until the end of the data collection process). The demand for high-quality data necessitates a large amount of human effort and substantial time and money spent waiting for data collection to be completed. As a result, it is critical to find a viable option to reduce both the time and cost of data collecting while also maintaining the performance of a trained vehicle controller. This paper offers a novel behavioral cloning approach for lateral vehicle control to address the aforementioned problems. The proposed technique begins by collecting the least amount of human driving data possible. The data from human drivers are utilized for training a convolutional neural network for lateral control. The trained neural network is subsequently deployed to the vehicle's automated driving controller, replacing a human driver. At this point, a human driver is out of the loop, and an automated driving controller, trained by the initial data from a human driver, drives the vehicle to collect further training data. The driving data obtained are sent into a convolutional neural network training module, then the newly trained neural network is deployed to the automated driving controller that will drive the vehicle further. The data collection alternates neural network training processes using the collected data until the neural network learns to correctly associate an image input with a steering angle. The proposed incremental approach was extensively tested in simulated environments, and the results are promising, only 3.81% (1,061 out of 27,884) of the total data came from a human driver. The incrementally trained neural networks using data collected by automated controllers were able to drive the vehicle in two different tracks successfully. The AI chauffeur was able to drive the vehicle on Track B for more than 70% of the track even though it has not seen the track before.
引用
收藏
页码:33771 / 33786
页数:16
相关论文
共 50 条
  • [21] Agile Autonomous Driving using End-to-End Deep Imitation Learning
    Pan, Yunpeng
    Cheng, Ching-An
    Saigol, Kamil
    Lee, Keuntaek
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [22] End-to-end deep learning for reverse driving trajectory of autonomous bulldozer
    You, Ke
    Ding, Lieyun
    Jiang, Yutian
    Wu, Zhangang
    Zhou, Cheng
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [23] GenAD: Generative End-to-End Autonomous Driving
    Zheng, Wenzhao
    Song, Ruiqi
    Guo, Xianda
    Zhan, Chenming
    Chen, Long
    COMPUTER VISION - ECCV 2024, PT LXV, 2025, 15123 : 87 - 104
  • [24] Performance optimization of autonomous driving control under end-to-end deadlines
    Bai, Yunhao
    Li, Li
    Wang, Zejiang
    Wang, Xiaorui
    Wang, Junmin
    REAL-TIME SYSTEMS, 2022, 58 (04) : 509 - 547
  • [25] Uncertainty Quantification with Statistical Guarantees in End-to-End Autonomous Driving Control
    Michelmore, Rhiannon
    Wicker, Matthew
    Laurenti, Luca
    Cardelli, Luca
    Gal, Yarin
    Kwiatkowska, Marta
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 7344 - 7350
  • [26] End-to-End Autonomous Driving in CARLA: A Survey
    Al Ozaibi, Youssef
    Hina, Manolo Dulva
    Ramdane-Cherif, Amar
    IEEE ACCESS, 2024, 12 : 146866 - 146900
  • [27] End-to-end Autonomous Driving: Advancements and Challenges
    Chu, Duan-Feng
    Wang, Ru-Kang
    Wang, Jing-Yi
    Hua, Qiao-Zhi
    Lu, Li-Ping
    Wu, Chao-Zhong
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (10): : 209 - 232
  • [28] End-to-End Autonomous Driving: Challenges and Frontiers
    Chen, Li
    Wu, Penghao
    Chitta, Kashyap
    Jaeger, Bernhard
    Geiger, Andreas
    Li, Hongyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10164 - 10183
  • [29] Performance optimization of autonomous driving control under end-to-end deadlines
    Yunhao Bai
    Li Li
    Zejiang Wang
    Xiaorui Wang
    Junmin Wang
    Real-Time Systems, 2022, 58 : 509 - 547
  • [30] End-to-end deep learning-based autonomous driving control for high-speed environment
    Cheol-jin Kim
    Myung-jae Lee
    Kyu-hong Hwang
    Young-guk Ha
    The Journal of Supercomputing, 2022, 78 : 1961 - 1982