Renormalization group methods and applications: First results for the weakly coupled Anderson model

被引:2
|
作者
Magnen, J [1 ]
Poirot, G [1 ]
Rivasseau, V [1 ]
机构
[1] Ecole Polytech, Ctr Phys Theor, F-91128 Palaiseau, France
来源
PHYSICA A | 1999年 / 263卷 / 1-4期
关键词
D O I
10.1016/S0378-4371(98)00519-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We first recall the renormalization group approach to the study of weakly interacting Fermions where the singularity of the free propagator lies on a sphere i.e. the Fermi surface [1][2]. The main results are in two dimensions because, in this case, the vertices of the interaction are approximatively factorized [3]. It has allowed to prove the existence of a Fermi liquid in two dimensions [4][5]. This suggests a new point of view on the two dimensional Anderson model of an electron in a random potential at small coupling lambda (where there are almost no rigorous results up to now). We prove that there exists kappa: > 0 such that for epsilon = lambda(2+kappa), the density of states [GRAPHICS] is analytic in E in a band of width lambda(2) which is the expected optimal width [8]. A non perturbative stability argument should complete this work by taking the epsilon --> 0 limit.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [1] Renormalization Group Analysis of the Hierarchical Anderson Model
    Per von Soosten
    Simone Warzel
    Annales Henri Poincaré, 2017, 18 : 1919 - 1947
  • [2] Renormalization Group Analysis of the Hierarchical Anderson Model
    von Soosten, Per
    Warzel, Simone
    ANNALES HENRI POINCARE, 2017, 18 (06): : 1919 - 1947
  • [3] A functional renormalization group approach to the Anderson impurity model
    Bartosch, Lorenz
    Freire, Hermann
    Ramos Cardenas, Jose Juan
    Kopietz, Peter
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (30)
  • [4] Numerical renormalization group study of the `compactified' Anderson model
    Imperial Coll, London, United Kingdom
    Phys B Condens Matter, (627-629):
  • [5] Renormalization group study of NMR in a gapped Anderson model
    Pinto, J. W. M.
    Frota, H. O.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 379 : 217 - 220
  • [6] Numerical renormalization group study of the 'compactified' Anderson model
    Bulla, R
    Hewson, AC
    PHYSICA B, 1997, 230 : 627 - 629
  • [7] Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group
    Kopietz, Peter
    Bartosch, Lorenz
    Costa, Lucio
    Isidori, Aldo
    Ferraz, Alvaro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
  • [8] RENORMALIZATION-GROUP STUDY OF THE ANDERSON-HUBBARD MODEL
    MA, M
    PHYSICAL REVIEW B, 1982, 26 (09): : 5097 - 5102
  • [9] Functional renormalization group study of the Anderson-Holstein model
    Laakso, M. A.
    Kennes, D. M.
    Jakobs, S. G.
    Meden, V.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [10] Renormalization group analysis of the Anderson model on random regular graphs
    Vanoni, Carlo
    Altshuler, Boris
    Kravtsovd, Vladimir E.
    Scardicchiob, Antonello
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (29) : e2401955121