Observer-based robust synchronization of dynamical systems

被引:33
作者
Pogromsky, A [1 ]
Nijmeijer, H
机构
[1] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Eindhoven Univ Technol, Fac Mech Engn, NL-5600 MB Eindhoven, Netherlands
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1998年 / 8卷 / 11期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1142/S0218127498001832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the problem of robust synchronization of dynamical systems. The design procedure is based on the concept of observers with absolutely stable error dynamics. In the general case of nonlinear time-varying error dynamics the procedure requires exact knowledge of a Lyapunov function while in case of the linearizable error dynamics frequency domain conditions which ensure existence of such a function can be employed. Two examples are considered: synchronization of two Lorenz systems and Rossler systems.
引用
收藏
页码:2243 / 2254
页数:12
相关论文
共 21 条
[12]  
KENNEDY MP, 1997, IEEE T CIRCUITS SYST, V44
[13]  
KRENER A, 1985, SIAM J CONTROL OPTIM, V23, P47
[14]  
KRENER AJ, 1983, SYST CONTROL LETT, V3, P197
[15]  
MEGRETSKY A, 1993, J MATH SYST ESTIMATI, V3, P301
[16]   An observer looks at synchronization [J].
Nijmeijer, H ;
Mareels, IMY .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :882-890
[17]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[18]   STRUCTURED DISSIPATIVENESS AND ABSOLUTE STABILITY OF NONLINEAR-SYSTEMS [J].
SAVKIN, AV ;
PETERSEN, IR .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 62 (02) :443-460
[19]  
TCHON K, 1993, CONTR-THEOR ADV TECH, V9, P819
[20]  
Yakubovich V.A., 1973, SOV MATH DOKL, V14, P593