Observer-based robust synchronization of dynamical systems

被引:33
作者
Pogromsky, A [1 ]
Nijmeijer, H
机构
[1] Linkoping Univ, Dept Elect Engn, S-58183 Linkoping, Sweden
[2] Univ Twente, Dept Appl Math, NL-7500 AE Enschede, Netherlands
[3] Eindhoven Univ Technol, Fac Mech Engn, NL-5600 MB Eindhoven, Netherlands
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1998年 / 8卷 / 11期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1142/S0218127498001832
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with the problem of robust synchronization of dynamical systems. The design procedure is based on the concept of observers with absolutely stable error dynamics. In the general case of nonlinear time-varying error dynamics the procedure requires exact knowledge of a Lyapunov function while in case of the linearizable error dynamics frequency domain conditions which ensure existence of such a function can be employed. Two examples are considered: synchronization of two Lorenz systems and Rossler systems.
引用
收藏
页码:2243 / 2254
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 1971, VESTNIK LENINGRADSKO
[2]  
Barabanov N.E., 1988, SIB MAT ZH, V29, P3
[3]   On self-synchronization and controlled synchronization [J].
Blekhman, II ;
Fradkov, AL ;
Nijmeijer, H ;
Pogromsky, AY .
SYSTEMS & CONTROL LETTERS, 1997, 31 (05) :299-305
[4]  
BOL P, 1913, J REINE ANGEW MATH, V144, P284
[5]  
CHEN G, 1998, CONTROL SYNCHRONIZAT
[6]   SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS WITH APPLICATIONS TO COMMUNICATIONS [J].
CUOMO, KM ;
OPPENHEIM, AV ;
STROGATZ, SH .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10) :626-633
[7]  
Fradkov A., 1998, Introduction to Control of Oscillations and Chaos
[8]  
FRADKOV AL, 1997, P EUR CONTR C 9M
[9]  
GURTOVNIK A, 1974, PMM-J APPL MATH MEC, V38, P749
[10]  
Kalman R. E., 1957, T ASME, V79, P553