NCEM: Network structural similarity metric-based clustering for noisy cryo-EM single particle images

被引:0
作者
Shuo, Yin [1 ]
Zhang, Biao [1 ]
Yang, Yang [2 ]
Shen, Hong-Bin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
来源
2018 CHINESE AUTOMATION CONGRESS (CAC) | 2018年
基金
中国国家自然科学基金;
关键词
Cryo-EM; Single particle; Image clustering; Complex network; Structural similarity; ELECTRON-MICROSCOPY; RESOLUTION; CLASSIFICATION; ALIGNMENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cryo-EM single particle image reconstruction is currently a powerful technique for revealing the structure of biomacromolecules. Compared to traditional structural biology techniques like X-Ray, it requires fewer restrictions on specimens and is highly efficient with image processing tools. In this single particle reconstruction protocol, the ultimate goal is to identify different particle projection orientations. Since the picked single particle images are highly noisy, clustering is an important step to refrain noise by dividing images with similar projection angles into groups and averaging these images. The goal of clustering analysis is to assign similar particles into same class, so similarity measurement between particles is an important part in all clustering algorithms. Directly measuring the similarity of two particle images will be unreliable due to their low SNR. In this study, we propose a novel network structural similarity metric-based clustering algorithm NCEM for clustering the single particle images. We first construct a complex network for all particle images, where each node represents a particle. Then calculating the similarity between two nodes using structural similarity. This new network-based single particle image similarity metric has advantages over direct measurement for its noise resistance by using the structural information of the network. Our experiments on both artificial and experimental datasets demonstrate its effectiveness.
引用
收藏
页码:1303 / 1308
页数:6
相关论文
共 29 条
[1]  
[Anonymous], PROTEIN SCI
[2]  
[Anonymous], MAX CUT APPROACH HET
[3]  
[Anonymous], J CHEM INFORM MODELI
[4]   How cryo-EM is revolutionizing structural biology [J].
Bai, Xiao-Chen ;
McMullan, Greg ;
Scheres, Sjors H. W. .
TRENDS IN BIOCHEMICAL SCIENCES, 2015, 40 (01) :49-57
[5]   High resolution single particle refinement in EMAN2.1 [J].
Bell, James M. ;
Chen, Muyuan ;
Baldwin, Philip R. ;
Ludtke, Steven J. .
METHODS, 2016, 100 :25-34
[6]   A Primer to Single-Particle Cryo-Electron Microscopy [J].
Cheng, Yifan ;
Grigorieff, Nikolaus ;
Penczek, Pawel A. ;
Walz, Thomas .
CELL, 2015, 161 (03) :438-449
[7]  
Gray R. M., 1984, IEEE ASSP Magazine, V1, P4, DOI 10.1109/MASSP.1984.1162229
[8]   Classification of heterogeneous electron microscopic projections into homogeneous subsets [J].
Herman, G. T. ;
Kahnowski, M. .
ULTRAMICROSCOPY, 2008, 108 (04) :327-338
[9]   Next-generation electron microscopy in autophagy research [J].
Hurley, James H. ;
Nogales, Eva .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2016, 41 :211-216
[10]  
KATZ L, 1953, Psychometrika, V18, P39, DOI DOI 10.1007/BF02289026