A novel unsupervised bee colony optimization (UBCO) method for remote-sensing image classification: a case study in a heterogeneous marsh area

被引:3
作者
Li, Huapeng [1 ]
Zhang, Shuqing [1 ]
Ding, Xiaohui [1 ,2 ]
Zhang, Ce [3 ]
Cropp, Roger [4 ]
机构
[1] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
[4] Griffith Univ, Griffith Sch Environm, Gold Coast, Australia
基金
中国国家自然科学基金;
关键词
LAND-COVER CLASSIFICATION; SUPPORT VECTOR MACHINES; GENETIC ALGORITHM; PERFORMANCE; ACCURACY; WETLAND; FOREST; TM; EVOLUTION; TREES;
D O I
10.1080/01431161.2016.1246771
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Unsupervised image classification is an important means to obtain land-use/cover information in the field of remote sensing, since it does not require initial knowledge (training samples) for classification. Traditional methods such as k-means and Iterative self-organizing data analysis technique (ISODATA) have limitations in solving this NP-hard unsupervised classification problem, mainly due to their strict assumptions about the data distribution. The bee colony optimization (BCO) is a new type of swarm intelligence, based upon which a simple and novel unsupervised bee colony optimization (UBCO) method is proposed for remote-sensing image classification. UBCO possesses powerful exploitation and exploration capacities that are carried out by employed bees, onlookers, and scouts. This allows the promising regions to be globally searched quickly and thoroughly, without becoming trapped on local optima. In addition, it has no restrictions on data distribution, and thus is especially suitable for handling complex remote-sensing data. We tested the method on the Zhalong National Nature Reserve (ZNNR) - a typical inland wetland ecosystem in China, whose landscape is heterogeneous. The preliminary results showed that UBCO (overall accuracy = 80.81%) achieved statistically significant better classification result (McNemar test) in comparison with traditional k-means (63.11%) and other intelligent clustering methods built on genetic algorithm (unsupervised genetic algorithm (UGA), 71.49%), differential evolution (unsupervised differential evolution (UDE), 77.57%), and particle swarm optimization (unsupervised particle swarm optimization (UPSO), 69.86%). The robustness and superiority of UBCO were also demonstrated from the two other study sites next to the ZNNR with distinct landscapes (urban and natural landscapes). Enabling one to consistently find the optimal or nearly optimal global solution in image clustering, the UBCO is thus suggested as a robust method for unsupervised remote-sensing image classification, especially in the case of heterogeneous areas.
引用
收藏
页码:5726 / 5748
页数:23
相关论文
共 55 条
[1]   Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression [J].
Adam, Elhadi ;
Mutanga, Onisimo ;
Abdel-Rahman, Elfatih M. ;
Ismail, Riyad .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (02) :693-714
[2]   AntPart: an algorithm for the unsupervised classification problem using ants [J].
Admane, Lotfi ;
Benatchba, Karima ;
Koudil, Mouloud ;
Siad, Lamn ;
Maziz, Said .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (01) :16-28
[3]  
[Anonymous], INT J COMPUT SCI INF
[4]   Land cover classification from MODIS EVI times-series data using SOM neural network [J].
Bagan, H ;
Wang, QX ;
Watanabe, M ;
Yang, YH ;
Ma, JW .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (22) :4999-5012
[5]   GLC2000:: a new approach to global land cover mapping from Earth observation data [J].
Bartholomé, E ;
Belward, AS .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (09) :1959-1977
[6]  
Chang Y. L., 2009, IGARSS09
[7]  
CHUVIECO E, 1988, PHOTOGRAMM ENG REM S, V54, P1275
[8]   Classification by progressive generalization: A new automated methodology for remote sensing multichannel data [J].
Cihlar, J ;
Xia, QH ;
Chen, J ;
Beaubien, J ;
Fung, K ;
Latifovic, R .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1998, 19 (14) :2685-2704
[9]  
Congalton R.G., 2008, ASSESSING ACCURACY R, DOI DOI 10.1201/9781420055139
[10]   A REVIEW OF ASSESSING THE ACCURACY OF CLASSIFICATIONS OF REMOTELY SENSED DATA [J].
CONGALTON, RG .
REMOTE SENSING OF ENVIRONMENT, 1991, 37 (01) :35-46