Exercise-mediated locomotor recovery and lower-limb neuroplasticity after stroke

被引:50
作者
Forrester, Larry W. [1 ,2 ]
Wheaton, Lewis A. [3 ]
Luft, Andreas R. [4 ]
机构
[1] Univ Maryland, Sch Med, Dept Phys Therapy & Rehabil Sci, Baltimore, MD 21201 USA
[2] Dept Vet Affairs Maryland Hlth Care Syst, Res Serv, Baltimore, MD USA
[3] VA Maryland Hlth Care Syst, Baltimore, MD USA
[4] Univ Tubingen, Hertie Brain Inst Clin Brain Res, Tubingen, Germany
关键词
gait; gait training; hemiparesis; locomotor; lower limb; motor control; motor learning; neuroplasticity; neurorehabilitation; rehabilitation; stroke; treadmill exercise;
D O I
10.1682/JRRD.2007.02.0034
中图分类号
R49 [康复医学];
学科分类号
100215 ;
摘要
Assumptions that motor recovery plateaus within months after stroke are being challenged by advances in novel motor-learing-based rehabilitation therapies. The use of lower-limb treadmill (TM) exercise has been effective in improving hemiparetic gait function. In this review, we provide a rationale for treadmill exercise as stimulus for locomotor relearning after stroke. Recent studies using neuroimaging and neurophysiological measures demonstrate central nervous system (CNS) influences on lower-limb motor control and gait. As with studies of upper limbs, evidence shows that rapid transient CNS plasticity can be elicited in the lower limb. Such effects observed after short-term paretic leg exercises suggest potential mechanisms for motor learning with TM exercise. Initial intervention studies provide evidence that long-term TM exercise can mediate CNS plasticity, which is associated with improved gait function. Critical needs are to determine the optimal timing and intensities of TM therapy to maximize plasticity and learning effects.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 87 条
[1]  
[Anonymous], 1988, Motor control and learning: A behavioral emphasis
[2]   Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects [J].
Barbeau, H ;
Visintin, M .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2003, 84 (10) :1458-1465
[3]  
Barnes M, 2002, EUR J NEUROL, V9, P53
[4]  
BROWN TG, 1973, P ROY SOC LOND B BIO, V84, P308
[5]   Sequential activation brain mapping after subcortical stroked:: changes in hemispheric balance and recovery [J].
Calautti, C ;
Leroy, F ;
Guincestre, JY ;
Marié, RM ;
Baron, JC .
NEUROREPORT, 2001, 12 (18) :3883-3886
[6]   Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex [J].
Capaday, C ;
Lavoie, BA ;
Barbeau, H ;
Schneider, C ;
Bonnard, M .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (01) :129-139
[7]   fMRI analysis of ankle movement tracking training in subject with stroke [J].
Carey, JR ;
Anderson, KM ;
Kimberley, TJ ;
Lewis, SM ;
Auerbach, EJ ;
Ugurbil, K .
EXPERIMENTAL BRAIN RESEARCH, 2004, 154 (03) :281-290
[8]   Rapid plasticity of human cortical movement representation induced by practice [J].
Classen, J ;
Liepert, J ;
Wise, SP ;
Hallett, M ;
Cohen, LG .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 79 (02) :1117-1123
[9]  
Colombo G, 2000, J REHABIL RES DEV, V37, P693
[10]   A functional MRI study of subjects recovered from hemiparetic stroke [J].
Cramer, SC ;
Nelles, G ;
Benson, RR ;
Kaplan, JD ;
Parker, RA ;
Kwong, KK ;
Kennedy, DN ;
Finklestein, SP ;
Rosen, BR .
STROKE, 1997, 28 (12) :2518-2527