GiniClust3: a fast and memory-efficient tool for rare cell type identification

被引:31
作者
Dong, Rui [1 ,2 ,3 ]
Yuan, Guo-Cheng [1 ,2 ,3 ]
机构
[1] Dana Farber Canc Inst, Dept Pediat Oncol, Boston, MA 02215 USA
[2] Boston Childrens Hosp, Boston, MA 02115 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
关键词
Scalability; Rare cell identification; Gini index; Single cell RNA-seq;
D O I
10.1186/s12859-020-3482-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background With the rapid development of single-cell RNA sequencing technology, it is possible to dissect cell-type composition at high resolution. A number of methods have been developed with the purpose to identify rare cell types. However, existing methods are still not scalable to large datasets, limiting their utility. To overcome this limitation, we present a new software package, called GiniClust3, which is an extension of GiniClust2 and significantly faster and memory-efficient than previous versions. Results Using GiniClust3, it only takes about 7 h to identify both common and rare cell clusters from a dataset that contains more than one million cells. Cell type mapping and perturbation analyses show that GiniClust3 could robustly identify cell clusters. Conclusions Taken together, these results suggest that GiniClust3 is a powerful tool to identify both common and rare cell population and can handle large dataset. GiniCluster3 is implemented in the open-source python package and available at .
引用
收藏
页数:7
相关论文
共 23 条
[1]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[2]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[3]   De Novo Prediction of Stem Cell Identity using Single-Cell Transcriptome Data [J].
Grun, Dominic ;
Muraro, Mauro J. ;
Boisset, Jean-Charles ;
Wiebrands, Kay ;
Lyubimova, Anna ;
Dharmadhikari, Gitanjali ;
van den Born, Maaike ;
van Es, Johan ;
Jansen, Erik ;
Clevers, Hans ;
de Koning, Eelco J. P. ;
van Oudenaarden, Alexander .
CELL STEM CELL, 2016, 19 (02) :266-277
[4]   Single-cell messenger RNA sequencing reveals rare intestinal cell types [J].
Grun, Dominic ;
Lyubimova, Anna ;
Kester, Lennart ;
Wiebrands, Kay ;
Basak, Onur ;
Sasaki, Nobuo ;
Clevers, Hans ;
van Oudenaarden, Alexander .
NATURE, 2015, 525 (7568) :251-+
[5]   Mapping the Mouse Cell Atlas by Microwell-Seq (vol 172, pg 1091, 2018) [J].
Han, Xiaoping ;
Wang, Renying ;
Zhou, Yincong ;
Fei, Lijiang ;
Sun, Huiyu ;
Lai, Shujing ;
Saadatpour, Assieh ;
Zhou, Ziming ;
Chen, Haide ;
Ye, Fang ;
Huang, Daosheng ;
Xu, Yang ;
Huang, Wentao ;
Jiang, Mengmeng ;
Jiang, Xinyi ;
Mao, Jie ;
Chen, Yao ;
Lu, Chenyu ;
Xie, Jin ;
Fang, Qun ;
Wang, Yibin ;
Yue, Rui ;
Li, Tiefeng ;
Huang, He ;
Orkin, Stuart H. ;
Yuan, Guo-Cheng ;
Chen, Ming ;
Guo, Guoji .
CELL, 2018, 173 (05) :1307-1307
[6]   Geometric Sketching Compactly Summarizes the Single-Cell Transcriptomic Landscape [J].
Hie, Brian ;
Cho, Hyunghoon ;
DeMeo, Benjamin ;
Bryson, Bryan ;
Berger, Bonnie .
CELL SYSTEMS, 2019, 8 (06) :483-+
[7]   GiniClust: detecting rare cell types from single-cell gene expression data with Gini index [J].
Jiang, Lan ;
Chen, Huidong ;
Pinello, Luca ;
Yuan, Guo-Cheng .
GENOME BIOLOGY, 2016, 17
[8]   Discovery of rare cells from voluminous single cell expression data [J].
Jindal, Aashi ;
Gupta, Prashant ;
Jayadeva ;
Sengupta, Debarka .
NATURE COMMUNICATIONS, 2018, 9
[9]   The Technology and Biology of Single-Cell RNA Sequencing [J].
Kolodziejczyk, Aleksandra A. ;
Kim, Jong Kyoung ;
Svensson, Valentine ;
Marioni, John C. ;
Teichmann, Sarah A. .
MOLECULAR CELL, 2015, 58 (04) :610-620
[10]   Glutamate as a neurotransmitter in the brain: Review of physiology and pathology [J].
Meldrum, BS .
JOURNAL OF NUTRITION, 2000, 130 (04) :1007S-1015S