Information, disturbance, and Hamiltonian quantum feedback control

被引:77
作者
Doherty, AC [1 ]
Jacobs, K
Jungman, G
机构
[1] CALTECH, Norman Bridge Lab Phys 12 33, Pasadena, CA 91125 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 06期
关键词
D O I
10.1103/PhysRevA.63.062306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and we consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance that are distinct from those usually considered in quantum information theory. Using these concepts, we identify an information tradeoff in quantum feedback control.
引用
收藏
页数:13
相关论文
共 67 条
[1]   MEANING OF AN INDIVIDUAL FEYNMAN PATH [J].
AHARONOV, Y ;
VARDI, M .
PHYSICAL REVIEW D, 1980, 21 (08) :2235-2240
[3]   MEASUREMENTS CONTINUOUS IN TIME AND A-POSTERIORI STATES IN QUANTUM-MECHANICS [J].
BARCHIELLI, A ;
BELAVKIN, VP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07) :1495-1514
[4]   A MODEL FOR THE MACROSCOPIC DESCRIPTION AND CONTINUAL OBSERVATIONS IN QUANTUM-MECHANICS [J].
BARCHIELLI, A ;
LANZ, L ;
PROSPERI, GM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1982, 72 (01) :79-121
[5]   STOCHASTIC DIFFERENTIAL-EQUATIONS AND A POSTERIORI STATES IN QUANTUM-MECHANICS [J].
BARCHIELLI, A .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1993, 32 (12) :2221-2233
[6]  
Belavkin P., 1989, Modeling and Control of Systems, V121, P245
[7]  
BELAVKIN V. P., 1989, STOCHASTIC METHODS M, P310
[8]  
BELAVKIN VP, 1983, AUTOMAT REM CONTR+, V44, P178
[9]   QUANTUM STOCHASTIC CALCULUS AND QUANTUM NONLINEAR FILTERING [J].
BELAVKIN, VP .
JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 42 (02) :171-201
[10]  
Belavkin VP, 1999, REP MATH PHYS, V43, P405, DOI 10.1016/S0034-4877(00)86386-7