An accurate direct technique for parametrizing cubic equations of state -: Part III.: Application of a crossover treatment

被引:17
作者
Llovell, F. [1 ]
Vega, L. F. [1 ,2 ]
Seiltgens, D. [3 ]
Mejia, A. [3 ]
Segura, H. [3 ]
机构
[1] CSIC, Inst Ciencia Mat Barcelona, ICMAB, E-08193 Barcelona, Spain
[2] MATGAS Res Ctr, Barcelona 08193, Spain
[3] Univ Concepcion, Dept Ingn Quim, Concepcion, Chile
关键词
cubic equation of state; soft-SAFF; crossover; critical region; n-alkanes; 1-alkanols; carbon dioxide; water;
D O I
10.1016/j.fluid.2007.11.006
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work presents an extension of a generalized van der Waals-type equation of state by including a crossover treatment to consider the fluctuations in the critical region. The original cubic equation depends on simple parameters of pure fluids, and it is able to reproduce vapor pressures and densities over a wide range of conditions, once the appropriate parametrization techniques are used. The equation is forced to reproduce the critical point by explicitly including this point into the fitting procedure. However, as all mean field theories, the equation does not take into account the fluctuations appearing as the critical region is approached. Hence, the non-analytical asymptotic behavior in the vicinity of the critical point is not well reproduced, leading to some inaccuracies in liquid and/or gas phase equilibria density calculations. To overcome this limitation we have applied a specific crossover treatment, based on White's work [J. White, Fluid Phase Equilib. 75 (1992) 53-64; L.W. Salvino, J.A. White, J. Chern. Phys. 96 (1992) 4559-4568] from the renormalization group (RG) theory [K. Wilson, Phys. Rev. 134 (1971) 3174-3205]. This treatment is done by incorporating the scaling laws valid asymptotically close to the critical point. In addition to accurate density estimations far from and close to the critical point, the extended equation is also able to reproduce the universal critical exponents describing the approach to the critical point. The extended equation has been applied to two chemical families: the n-alkanes and I 1-alkanols, as well as to other compounds of industrial interest, including carbon dioxide, ethylene, toluene, xenon and water, providing excellent agreement with experimental data. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:201 / 210
页数:10
相关论文
共 30 条
[1]  
Blas FJ, 1997, MOL PHYS, V92, P135, DOI 10.1080/00268979709482082
[2]   Critical behavior and partial miscibility phenomena in binary mixtures of hydrocarbons by the statistical associating fluid theory [J].
Blas, FJ ;
Vega, LF .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (17) :7405-7413
[3]  
BLAS FJ, UNPUB
[4]   Vapor-liquid critical properties of multi-component fluid mixture [J].
Cai, J ;
Qiu, DL ;
Zhang, LN ;
Hu, Y .
FLUID PHASE EQUILIBRIA, 2006, 241 (1-2) :229-235
[5]   Thermodynamics for fluid mixtures near to and far from the vapor-liquid critical point [J].
Cai, J ;
Prausnitz, JM .
FLUID PHASE EQUILIBRIA, 2004, 219 (02) :205-217
[6]   Rescaling of three-parameter equations of state: PC-SAFT and SPHCT [J].
Cismondi, M ;
Brignole, EA ;
Mollerup, J .
FLUID PHASE EQUILIBRIA, 2005, 234 (1-2) :108-121
[7]  
Daubert T E., 1989, PHYS THERMODYNAMIC P, DOI DOI 10.5860/CHOICE.27-3319
[8]   New identities for critical-point constraints with application to cubic equations of state [J].
Eubank, PT ;
Hall, KR .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (15) :4446-4451
[9]   Equation of state for thermodynamic properties of chain fluids near-to and far-from the vapor-liquid critical region [J].
Jiang, JW ;
Prausnitz, JM .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (13) :5964-5974
[10]   Crossover SAFT equation of state: Application for normal alkanes [J].
Kiselev, SB ;
Ely, JF .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1999, 38 (12) :4993-5004