Some remarks about factors of graphs

被引:20
作者
Correa, Jose R. [1 ]
Matamala, Martin [2 ,3 ]
机构
[1] Univ Adolfo Ibanez, Sch Business, Santiago, Chile
[2] Univ Chile, CNRS, UMR 2071, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, CNRS, UMR 2071, Ctr Modelamiento Matemat, Santiago, Chile
关键词
graph theory; factors;
D O I
10.1002/jgt.20284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (g, f)-factor of a graph is a subset F of E such that for all v is an element of V, g(v) <= deg(F)(V) <= f(v). Lovasz gave a necessary and sufficient condition for the existence of a (g, f)-factor. We extend, to the case of edge-weighted graphs, a result of Kano and Saito who showed that if g(v) < lambda deg(E)(V) < f(v) for any lambda is an element of [0, 1], then a (g, f)-factor always exist. In addition, we use results of Anstee to provide new necessary and sufficient conditions for the existence of a (g, f)-factor. (c) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 19 条
[1]   SIMPLIFIED EXISTENCE THEOREMS FOR (G,F)-FACTORS [J].
ANSTEE, RP .
DISCRETE APPLIED MATHEMATICS, 1990, 27 (1-2) :29-38
[2]   AN ALGORITHMIC PROOF OF TUTTES F-FACTOR THEOREM [J].
ANSTEE, RP .
JOURNAL OF ALGORITHMS, 1985, 6 (01) :112-131
[3]   Improved bounds on nonblocking 3-stage clos networks [J].
Correa, Jose R. ;
Goemans, Michel X. .
SIAM JOURNAL ON COMPUTING, 2007, 37 (03) :870-894
[4]  
Gabow H.N., P 15 ANN ACM S THEOR
[5]  
Godsil C., 2001, ALGEBRAIC GRAPH THEO
[6]  
GUPTA RP, 1978, DISCRETE MATH, V23, P229, DOI 10.1016/0012-365X(78)90004-3
[7]   A SIMPLE EXISTENCE CRITERION FOR (G LESS-THAN F)-FACTORS [J].
HEINRICH, K ;
HELL, P ;
KIRKPATRICK, DG ;
LIU, GZ .
DISCRETE MATHEMATICS, 1990, 85 (03) :313-317
[8]   Rounding in symmetric matrices and undirected graphs [J].
Hell, P ;
Kirkpatrick, D ;
Li, B .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (01) :1-21
[9]   ALGORITHMS FOR DEGREE CONSTRAINED GRAPH FACTORS OF MINIMUM DEFICIENCY [J].
HELL, P ;
KIRKPATRICK, DG .
JOURNAL OF ALGORITHMS, 1993, 14 (01) :115-138
[10]  
Hoffman A.J., 1956, J WASHINGTON ACAD SC, V46, P211