A thermostable Cas9 with increased lifetime in human plasma

被引:125
作者
Harrington, Lucas B. [1 ]
Paez-Espino, David [2 ]
Staahl, Brett T. [1 ]
Chen, Janice S. [1 ]
Ma, Enbo [1 ]
Kyrpides, Nikos C. [2 ]
Doudna, Jennifer A. [1 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Innovat Genom Inst, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, MBIB Div, Berkeley, CA 94720 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
美国国家科学基金会;
关键词
HALF-LIFE; DUAL-RNA; PROTEINS; CRISPR-CAS9; PREDICTION; EVOLUTION; GENE;
D O I
10.1038/s41467-017-01408-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at temperatures up to 70 degrees C, compared to 45 degrees C for Streptococcus pyogenes Cas9 (SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We also found that GeoCas9 is an effective tool for editing mammalian genomes when delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in human plasma, the thermostable GeoCas9 provides the foundation for improved RNP delivery in vivo and expands the temperature range of CRISPR-Cas9.
引用
收藏
页数:8
相关论文
共 46 条
  • [1] Amrani N., 2017, PREPRINT
  • [2] CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets
    Biswas, Ambarish
    Gagnon, Joshua N.
    Brouns, Stan J. J.
    Fineran, Peter C.
    Brown, Chris M.
    [J]. RNA BIOLOGY, 2013, 10 (05) : 817 - 827
  • [3] Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
    Bolotin, A
    Ouinquis, B
    Sorokin, A
    Ehrlich, SD
    [J]. MICROBIOLOGY-SGM, 2005, 151 : 2551 - 2561
  • [4] New CRISPR-Cas systems from uncultivated microbes
    Burstein, David
    Harrington, Lucas B.
    Strutt, Steven C.
    Probst, Alexander J.
    Anantharaman, Karthik
    Thomas, Brian C.
    Doudna, Jennifer A.
    Banfield, Jillian F.
    [J]. NATURE, 2017, 542 (7640) : 237 - 241
  • [5] Classification and evolution of type II CRISPR-Cas systems
    Chylinski, Krzysztof
    Makarova, Kira S.
    Charpentier, Emmanuelle
    Koonin, Eugene V.
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (10) : 6091 - 6105
  • [6] Cong L., 2013, Science
  • [7] Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium
    Cordova, Lauren T.
    Long, Christopher P.
    Venkataramanan, Keerthi P.
    Antoniewicz, Maciek R.
    [J]. METABOLIC ENGINEERING, 2015, 32 : 74 - 81
  • [8] CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    Deltcheva, Elitza
    Chylinski, Krzysztof
    Sharma, Cynthia M.
    Gonzales, Karine
    Chao, Yanjie
    Pirzada, Zaid A.
    Eckert, Maria R.
    Vogel, Joerg
    Charpentier, Emmanuelle
    [J]. NATURE, 2011, 471 (7340) : 602 - +
  • [9] Donk P J, 1920, J Bacteriol, V5, P373
  • [10] Esvelt KM, 2013, NAT METHODS, V10, P1116, DOI [10.1038/NMETH.2681, 10.1038/nmeth.2681]