Entropy of fuzzy events

被引:13
作者
Criado, F [1 ]
Gachechiladze, T [1 ]
机构
[1] TBILISI STATE UNIV, DEPT APPL MATH & COMP SCI, GE-380086 TBILISI, GEORGIA
关键词
measure of information; membership functions;
D O I
10.1016/S0165-0114(96)00073-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In order to elaborate a theory of communication which could be useful for designing a great variety of real communication systems it is necessary to consider the superposition of two kinds of uncertainties: probabilistic and possibilistic. For example Zadeh's general formula for the entropy of fuzzy random events takes into account these two basic uncertainties. In this paper we consider Zadeh's entropy, structurally related with this quantity a weighted entropy of De Luca and Termini and also the genetic connection of these entropies with Shannon's entropy function. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 12 条
[1]  
CRIADO F, IN PRESS FUZZY RANDO
[2]   DEFINITION OF NONPROBABILISTIC ENTROPY IN SETTING OF FUZZY SETS THEORY [J].
DELUCA, A ;
TERMINI, S .
INFORMATION AND CONTROL, 1972, 20 (04) :301-&
[3]  
FINSTEIN A, 1958, FDN INFORMATION THEO
[4]  
GACHECHILADZE T, 1989, APPL MATH, V139
[5]  
GACHECHILADZE T, 1988, APPL MATH, V133
[6]  
HIROTO K, 1982, FUZZY INFORMATION DE
[7]   FURTHER ADVANCES ON GENERAL THERMODYNAMICS OF OPEN SYSTEMS VIA INFORMATION-THEORY - EFFECTIVE ENTROPY, NEGATIVE INFORMATION [J].
JUMARIE, G .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1975, 6 (03) :249-268
[8]  
Kauffman A., 1977, Introduction a la theorie des sous-ensembles flous
[9]   ON THE UNIQUENESS OF POSSIBILISTIC MEASURE OF UNCERTAINTY AND INFORMATION [J].
KLIR, GJ ;
MARIANO, M .
FUZZY SETS AND SYSTEMS, 1987, 24 (02) :197-219
[10]  
KULLBACK S, 1958, INFORMATION THEORY S