Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition

被引:115
作者
Liang, Qiong [1 ,2 ]
Liu, Kuan [1 ,2 ]
Sun, Mingzi [3 ]
Ren, Zhiwei [1 ]
Fong, Patrick W. K. [1 ]
Huang, Jiaming [1 ]
Qin, Minchao [4 ]
Wu, Zehan [5 ]
Shen, Dong [6 ]
Chun-Sing Lee [6 ]
Hao, Jianhua [5 ]
Lu, Xinhui [4 ]
Huang, Bolong [3 ]
Li, Gang [1 ,2 ]
机构
[1] Hong Kong Polytech Univ, Res Inst Smart Energy RISE, Dept Elect & Informat Engn, Hung Hom,Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Guangdong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hung Hom, Kowloon, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[5] Hong Kong Polytech Univ, Dept Appl Phys, Hung Hom, Kowloon, Hong Kong, Peoples R China
[6] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Dept Chem, Kowloon, Hong Kong, Peoples R China
关键词
blade coating; cosolvents; crystallization kinetics; ethyl alcohol; nonradiative recombination; perovskite solar cells; trace-solvent-assisted transition; BASE ADDUCT; EFFICIENT; FABRICATION; DEPOSITION; IMPROVES; CATION; LAYERS;
D O I
10.1002/adma.202200276
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manipulating the perovskite solidification process, including nucleation and crystal growth, plays a critical role in controlling film morphology and thus affects the resultant device performance. In this work, a facile and effective ethyl alcohol (EtOH) cosolvent strategy is demonstrated with the incorporation of EtOH into perovskite ink for high-performance room-temperature blade-coated perovskite solar cells (PSCs) and modules. Systematic real-time perovskite crystallization studies uncover the delicate perovskite structural evolutions and phase-transition pathway. Time-resolved X-ray diffraction and density functional theory calculations both demonstrate that EtOH in the mixed-solvent system significantly promotes the formation of an FA-based precursor solvate (FA(2)PbBr(4)center dot DMSO) during the trace-solvent-assisted transition process, which finely regulates the balance between nucleation and crystal growth to guarantee high-quality perovskite films. This strategy efficiently suppresses nonradiative recombination and improves efficiencies in both 1.54 (23.19%) and 1.60 eV (22.51%) perovskite systems, which represents one of the highest records for blade-coated PSCs in both small-area devices and minimodules. An excellent V-OC deficit as low as 335 mV in the 1.54 eV perovskite system, coincident with the measured nonradiative recombination loss of only 77 mV, is achieved. More importantly, significantly enhanced device stability is another signature of this approach.
引用
收藏
页数:12
相关论文
共 74 条
[1]   Roll-to-Roll Fabrication of Solution Processed Electronics [J].
Abbel, Robert ;
Galagan, Yulia ;
Groen, Pim .
ADVANCED ENGINEERING MATERIALS, 2018, 20 (08)
[2]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[3]   Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules [J].
Bu, Tongle ;
Li, Jing ;
Li, Hengyi ;
Tian, Congcong ;
Su, Jie ;
Tong, Guoqing ;
Ono, Luis K. ;
Wang, Chao ;
Lin, Zhipeng ;
Chai, Nianyao ;
Zhang, Xiao-Li ;
Chang, Jingjing ;
Lu, Jianfeng ;
Zhong, Jie ;
Huang, Wenchao ;
Qi, Yabing ;
Cheng, Yi-Bing ;
Huang, Fuzhi .
SCIENCE, 2021, 372 (6548) :1327-+
[4]   High performance hybrid solar cells sensitized by organolead halide perovskites [J].
Cai, Bing ;
Xing, Yedi ;
Yang, Zhou ;
Zhang, Wen-Hua ;
Qiu, Jieshan .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (05) :1480-1485
[5]   Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films [J].
Cao, Jing ;
Jing, Xiaojing ;
Yan, Juanzhu ;
Hu, Chengyi ;
Chen, Ruihao ;
Yin, Jun ;
Li, Jing ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (31) :9919-9926
[6]   Solvent Engineering of the Precursor Solution toward Large-Area Production of Perovskite Solar Cells [J].
Chao, Lingfeng ;
Niu, Tingting ;
Gao, Weiyin ;
Ran, Chenxin ;
Song, Lin ;
Chen, Yonghua ;
Huang, Wei .
ADVANCED MATERIALS, 2021, 33 (14)
[7]   Imperfections and their passivation in halide perovskite solar cells [J].
Chen, Bo ;
Rudd, Peter N. ;
Yang, Shuang ;
Yuan, Yongbo ;
Huang, Jinsong .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (14) :3842-3867
[8]   Stabilizing perovskite-substrate interfaces for high-performance perovskite modules [J].
Chen, Shangshang ;
Dai, Xuezeng ;
Xu, Shuang ;
Jiao, Haoyang ;
Zhao, Liang ;
Huang, Jinsong .
SCIENCE, 2021, 373 (6557) :902-+
[9]   Crystallization in one-step solution deposition of perovskite films: Upward or downward? [J].
Chen, Shangshang ;
Xiao, Xun ;
Chen, Bo ;
Kelly, Leah L. ;
Zhao, Jingjing ;
Lin, Yuze ;
Toney, Michael F. ;
Huang, Jinsong .
SCIENCE ADVANCES, 2021, 7 (04)
[10]   Defect compensation in formamidinium-caesium perovskites for highly efficient solar mini-modules with improved photostability [J].
Deng, Yehao ;
Xu, Shuang ;
Chen, Shangshang ;
Xiao, Xun ;
Zhao, Jingjing ;
Huang, Jinsong .
NATURE ENERGY, 2021, 6 (06) :633-641