Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity

被引:194
作者
Leonov, G. A. [1 ]
Kuznetsov, N. V. [1 ,2 ]
Mokaev, T. N. [1 ,2 ]
机构
[1] St Petersburg State Univ, Math & Mech Fac, St Petersburg 198504, Russia
[2] Univ Jyvaskyla, Dept Math Informat Technol, FIN-40014 Jyvaskyla, Finland
基金
俄罗斯科学基金会;
关键词
Hidden attractor; Self-excited attractor; Multistability; Coexistence of attractors; Lorenz-like system; Homoclinic orbit; Lyapunov exponent; Lyapunov dimension; OSCILLATIONS; EXISTENCE; TRAJECTORIES; BIFURCATION; DYNAMICS; CHEN; LU;
D O I
10.1016/j.cnsns.2015.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a Lorenz-like system, describing convective fluid motion in rotating cavity, is considered. It is shown numerically that this system, like the classical Lorenz system, possesses a homoclinic trajectory and a chaotic self-excited attractor. However, for the considered system, unlike the classical Lorenz system, along with self-excited attractor a hidden attractor can be localized. Analytical-numerical localization of hidden attractor is demonstrated. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 67 条
[1]  
AIZERMAN M., 1949, Uspehi Matem. Nauk (N.S.), V4, P187
[2]  
Andrievsky B.R., 2013, IFAC P VOLUMES IFAC, V19, P37, DOI [10.3182/20130902-5-DE-2040.00040, DOI 10.3182/20130902-5-DE-2040.00040]
[3]  
Andrievsky BR, 2013, IFAC Proc, V46, P75
[4]  
[Anonymous], 1957, T AM SOC MECH ENG
[5]  
[Anonymous], 1982, APPL MATH SCI
[6]  
BAUTIN NN, 1939, DOKL AKAD NAUK SSSR, V24, P668
[7]  
Benettin G., 1980, Meccanica, V15, P21, DOI 10.1007/BF02128237
[8]  
Boichenko V.A., 2005, Dimension Theory for Ordinary Differential Equations
[9]   Analytical-Numerical Methods of Finding Hidden Oscillations in Multidimensional Dynamical Systems [J].
Burkin, I. M. ;
Khien, Nguen Ngok .
DIFFERENTIAL EQUATIONS, 2014, 50 (13) :1695-1717
[10]   Complicated basins and the phenomenon of amplitude death in coupled hidden attractors [J].
Chaudhuri, Ushnish ;
Prasad, Awadhesh .
PHYSICS LETTERS A, 2014, 378 (09) :713-718