Research on impulsive synchronization approach of parameter uncertain hyperchaotic systems with time-delay

被引:1
|
作者
Luo Yong-Jian [1 ]
Yu Qian [1 ]
Zhang Wei-Dong [2 ]
机构
[1] Xian Commun Inst, Inst Mil Elect Engn, Xian 710106, Peoples R China
[2] Xian Commun Inst, Inst Command Informat Syst, Xian 710106, Peoples R China
基金
中国国家自然科学基金;
关键词
time-delay; impulsive synchronization; digital secure communication; CHAOTIC SYSTEMS;
D O I
10.7498/aps.60.110504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, based on the Lyapunov stability theory, the impulsive synchronization asymptotic stability condition for different hyperchaotic systems with time delay and parameter uncertainty is first presented by using the linear feedback of state variable error between the slave system and the master system as the impulsive control signal. After the synchronization, a digital. communication system with time delay is provided to achieve secure communication. This scheme is of high security and robustness. Moreover, computer simulations show that in the communication system, the synchronization of the systems could be achieved quickly, and by using chaotic cipher sequence to encrypt the digital signal, the useful information signal can be recovered effectively from the receiver.
引用
收藏
页数:8
相关论文
共 15 条
  • [1] Controlling and synchronizing chaotic Genesio system via nonlinear feedback control
    Chen, MY
    Han, ZZ
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 17 (04) : 709 - 716
  • [2] FANG JQ, 2002, REIN CHAOS DEV HIGH, P14
  • [3] Robust stability of impulsive synchronization in hyperchaotic systems
    Haeri, Mohammad
    Dehghani, Mahsa
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) : 880 - 891
  • [4] Global chaos synchronization with channel time-delay
    Jiang, GP
    Zheng, WX
    Chen, GR
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 20 (02) : 267 - 275
  • [5] LAI HH, 2009, COMP APPL SOFT, V26, P38
  • [6] LI LQ, 2008, COMM TECH, V41, P168
  • [7] Parameter identification based on linear feedback control for uncertain chaotic system
    Li Nong
    Li Jian-Fen
    Liu Yu-Ping
    Ma Jian
    [J]. ACTA PHYSICA SINICA, 2008, 57 (03) : 1404 - 1408
  • [8] A new chaotic secure communication system
    Li, ZG
    Li, K
    Wen, CY
    Soh, YC
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (08) : 1306 - 1312
  • [9] Ma Tie-dong, 2008, Journal of System Simulation, V20, P4923
  • [10] SYNCHRONIZATION IN CHAOTIC SYSTEMS
    PECORA, LM
    CARROLL, TL
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (08) : 821 - 824