Global Well-Posedness of Incompressible Elastodynamics in Two Dimensions

被引:70
作者
Lei, Zhen [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, LMNS, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[3] Princeton Univ, Inst Adv Study, Princeton, NJ 08540 USA
关键词
NONLINEAR-WAVE EQUATIONS; VISCOELASTIC FLUID SYSTEM; CLASSICAL-SOLUTIONS; NULL CONDITION; EXISTENCE; SINGULARITIES; BLOWUP; DECAY; MODEL;
D O I
10.1002/cpa.21633
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for sufficiently small initial displacements in some weighted Sobolev space, the Cauchy problem of the systems of incompressible isotropic Hookean elastodynamics in two space dimensions admits a uniqueness global classical solution. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:2072 / 2106
页数:35
相关论文
共 50 条
[41]   GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION [J].
Suo, Xiaoxiao ;
Jiu, Quansen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) :4523-4553
[42]   Global well-posedness of the non-isothermal model for incompressible nematic liquid crystals [J].
Li, Quanrong .
BOUNDARY VALUE PROBLEMS, 2017, :1-23
[43]   Global well-posedness for the 3D viscous nonhomogeneous incompressible magnetohydrodynamic equations [J].
Zhai, Xiaoping ;
Li, Yongsheng ;
Yan, Wei .
ANALYSIS AND APPLICATIONS, 2018, 16 (03) :363-405
[44]   GLOBAL WELL-POSEDNESS FOR THE DENSITY-DEPENDENT INCOMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS IN BOUNDED DOMAINS [J].
Chen, Defu ;
Ye, Xia .
ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) :1833-1845
[45]   Global Well-Posedness and Incompressible Limit of the Hall-Magnetohydrodynamic System in a Bounded Domain [J].
Mu, Yanmin ;
Wang, Wenkang ;
Zhang, Jing .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2024, 37 (04) :482-490
[46]   GLOBAL WELL-POSEDNESS TO INCOMPRESSIBLE NON-INERTIAL QIAN-SHENG MODEL [J].
Ma, Yangjun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (07) :4479-4496
[47]   Global well-posedness of the 3D incompressible MHD equations with variable density [J].
Bie, Qunyi ;
Wang, Qiru ;
Yao, Zheng-an .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 :85-105
[48]   Global well-posedness for magneto-micropolar system in 21/2 dimensions [J].
Liu, Yujun ;
Li, Shan .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 280 :72-85
[49]   Almost global well-posedness of Ericksen-Leslie's hyperbolic liquid crystal model for small data in two dimensions [J].
Huang, Jiaxi ;
Jiang, Ning ;
Zhao, Lifeng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (10)
[50]   Global well-posedness and stability of semilinear Mindlin-Timoshenko system [J].
Pei, Pei ;
Rammaha, Mohammad A. ;
Toundykov, Daniel .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (02) :535-568