Global Well-Posedness of Incompressible Elastodynamics in Two Dimensions

被引:66
作者
Lei, Zhen [1 ,2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, LMNS, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[3] Princeton Univ, Inst Adv Study, Princeton, NJ 08540 USA
关键词
NONLINEAR-WAVE EQUATIONS; VISCOELASTIC FLUID SYSTEM; CLASSICAL-SOLUTIONS; NULL CONDITION; EXISTENCE; SINGULARITIES; BLOWUP; DECAY; MODEL;
D O I
10.1002/cpa.21633
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for sufficiently small initial displacements in some weighted Sobolev space, the Cauchy problem of the systems of incompressible isotropic Hookean elastodynamics in two space dimensions admits a uniqueness global classical solution. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:2072 / 2106
页数:35
相关论文
共 50 条
[21]   The 3D Incompressible Hall-MHD Equations: Global Well-Posedness [J].
Zhang, Nengqiu .
ACTA APPLICANDAE MATHEMATICAE, 2022, 178 (01)
[22]   Decay and Global Well-Posedness of the Free-Boundary Incompressible Euler Equations with Damping [J].
Lian, Jiali .
JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
[24]   Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system with variable density and electrical conductivity [J].
Gui, Guilong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (05) :1488-1539
[25]   Global well-posedness of the free-surface incompressible Euler equations with damping [J].
Lian, Jiali .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (02) :1066-1094
[26]   GLOBAL WELL-POSEDNESS OF THE FREE-SURFACE DAMPED INCOMPRESSIBLE EULER EQUATIONS WITH SURFACE TENSION [J].
Lian, Jiali .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2019, 17 (03) :587-608
[27]   Global Well-Posedness of Free Interface Problems for the Incompressible Inviscid Resistive MHD [J].
Wang, Yanjin ;
Xin, Zhouping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) :1323-1401
[28]   On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in RN [J].
Schonbek, Maria ;
Shibata, Yoshihiro .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (01) :537-550
[29]   GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE MHD EQUATIONS IN THE CRITICAL BESOV SPACES [J].
Zhai, Xiaoping ;
Li, Yongsheng ;
Yan, Wei .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) :1865-1884
[30]   GLOBAL EXISTENCE OF INHOMOGENEOUS INCOMPRESSIBLE ISOTROPIC ELASTODYNAMICS IN THREE DIMENSIONS [J].
Cui, Xiufang ;
Yin, Silu .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) :4721-4751