BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells

被引:153
作者
Sala, Elisa [1 ]
Mologni, Luca [1 ]
Truffa, Silvia [2 ]
Gaetano, Carlo [2 ]
Bollag, Gideon E. [3 ]
Gambacorti-Passerini, Carlo [1 ,4 ]
机构
[1] Univ Milano Bicocca, I-20052 Monza, Italy
[2] Ist Dermopat Immacolata, Rome, Italy
[3] Plexxikon Inc, Berkeley, CA USA
[4] McGill Univ, Montreal, PQ, Canada
关键词
D O I
10.1158/1541-7786.MCR-07-2001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BRAF-activating mutations have been reported in several types of cancer, including melanoma (similar to 70% of cases), thyroid (30-70%), ovarian (15-30%), and colorectal cancer (5-20%). Mutant BRAF has constitutive kinase activity and causes hyperactivation of the mitogen-activated protein kinase pathway. BRAF silencing induces regression of melanoma xenografts, indicating the essential role of BRAF for cell survival. We set up an inducible short hairpin RNA system to compare the role of oncogenic BRAF in thyroid carcinoma versus melanoma cells. Although BRAF knockdown led to apoptosis in the melanoma cell line A375, the anaplastic thyroid carcinoma cell ARO underwent growth arrest upon silencing, with little or no cell death. Reexpression of the thyroid differentiation marker, sodium iodide symporter, was induced after long-term silencing. The different outcome of BRAF down-regulation in the two cell lines was associated with an opposite regulation of p21(CIP1/WAF1) expression levels in response to the block of the BRAF mitogenic signal. These results were confirmed using a specific BRAF small-molecule inhibitor, PLX4032. Restoration of p21(CIP1/WAF1) expression rescued melanoma cells from death. Altogether, our data indicate that oncogenic BRAF inhibition can have a different effect on cell fate depending on the cellular type. Furthermore, we suggest that a BRAF-independent mechanism of cell survival exists in anaplastic thyroid cancer cells.
引用
收藏
页码:751 / 759
页数:9
相关论文
共 34 条
[1]   Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas [J].
Adeniran, AJ ;
Zhu, ZW ;
Gandhi, M ;
Steward, DL ;
Fidler, JP ;
Giordano, TJ ;
Biddinger, PW ;
Nikiforov, YE .
AMERICAN JOURNAL OF SURGICAL PATHOLOGY, 2006, 30 (02) :216-222
[2]   Is BRAF the Achilles' heel of thyroid cancer? [J].
Chiloeches, A ;
Marais, R .
CLINICAL CANCER RESEARCH, 2006, 12 (06) :1661-1664
[3]   Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer [J].
Ciampi, R ;
Knauf, JA ;
Kerler, R ;
Gandhi, M ;
Zhu, ZW ;
Nikiforova, MN ;
Rabes, HM ;
Fagin, JA ;
Nikiforov, YE .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (01) :94-101
[4]   Exon 15 BRAF mutations are uncommon in melanomas arising in nonsun-exposed sites [J].
Cohen, Y ;
Rosenbaum, E ;
Begum, S ;
Goldenberg, D ;
Esche, C ;
Lavie, O ;
Sidransky, D ;
Westra, WH .
CLINICAL CANCER RESEARCH, 2004, 10 (10) :3444-3447
[5]   Mutations of the BRAF gene in human cancer [J].
Davies, H ;
Bignell, GR ;
Cox, C ;
Stephens, P ;
Edkins, S ;
Clegg, S ;
Teague, J ;
Woffendin, H ;
Garnett, MJ ;
Bottomley, W ;
Davis, N ;
Dicks, N ;
Ewing, R ;
Floyd, Y ;
Gray, K ;
Hall, S ;
Hawes, R ;
Hughes, J ;
Kosmidou, V ;
Menzies, A ;
Mould, C ;
Parker, A ;
Stevens, C ;
Watt, S ;
Hooper, S ;
Wilson, R ;
Jayatilake, H ;
Gusterson, BA ;
Cooper, C ;
Shipley, J ;
Hargrave, D ;
Pritchard-Jones, K ;
Maitland, N ;
Chenevix-Trench, G ;
Riggins, GJ ;
Bigner, DD ;
Palmieri, G ;
Cossu, A ;
Flanagan, A ;
Nicholson, A ;
Ho, JWC ;
Leung, SY ;
Yuen, ST ;
Weber, BL ;
Siegler, HF ;
Darrow, TL ;
Paterson, H ;
Marais, R ;
Marshall, CJ ;
Wooster, R .
NATURE, 2002, 417 (6892) :949-954
[6]   The development of imatinib as a therapeutic agent for chronic myeloid leukemia [J].
Deininger, M ;
Buchdunger, E ;
Druker, BJ .
BLOOD, 2005, 105 (07) :2640-2653
[7]   Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells [J].
Eskandarpour, M ;
Kiaii, S ;
Zhu, CY ;
Castro, J ;
Sakko, AJ ;
Hansson, J .
INTERNATIONAL JOURNAL OF CANCER, 2005, 115 (01) :65-73
[8]   HIGH PREVALENCE OF MUTATIONS OF THE P53 GENE IN POORLY DIFFERENTIATED HUMAN THYROID CARCINOMAS [J].
FAGIN, JA ;
MATSUO, K ;
KARMAKAR, A ;
CHEN, DL ;
TANG, SH ;
KOEFFLER, HP .
JOURNAL OF CLINICAL INVESTIGATION, 1993, 91 (01) :179-184
[9]   Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma:: data from a multicentric Italian study and review of the literature [J].
Fugazzola, L. ;
Puxeddu, E. ;
Avenia, N. ;
Romei, C. ;
Cirello, V. ;
Cavaliere, A. ;
Faviana, P. ;
Mannavola, D. ;
Moretti, S. ;
Rossi, S. ;
Sculli, M. ;
Bottici, V. ;
Beck-Peccoz, P. ;
Pacini, F. ;
Pinchera, A. ;
Santeusanio, F. ;
Elisei, R. .
ENDOCRINE-RELATED CANCER, 2006, 13 (02) :455-464
[10]   Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL(+) leukemic cells and induces apoptosis [J].
GambacortiPasserini, C ;
leCoutre, P ;
Mologni, L ;
Fanelli, M ;
Bertazzoli, C ;
Marchesi, E ;
DiNicola, M ;
Biondi, A ;
Corneo, GM ;
Belotti, D ;
Pogliani, E ;
Lydon, NB .
BLOOD CELLS MOLECULES AND DISEASES, 1997, 23 (19) :380-394