Multi-branch neural network for hybrid metrology improvement

被引:0
作者
Digraci, P. [1 ,2 ]
Besacier, M. [1 ]
Gergaud, P. [2 ]
Rademaker, G. [2 ]
Reche, J. [2 ]
机构
[1] Univ Grenoble Alpes, CNRS, CEA LETI Minatec,LTM, Grenoble INP,Inst Engn & Management Univ Grenoble, F-38054 Grenoble, France
[2] Univ Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
来源
METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVI | 2022年 / 12053卷
关键词
Hybrid dimensional metrology; Critical dimensions; Advanced lithography; Nanoscale characterization; Data fusion; Artificial intelligence; Neural Network; Multi-branch architecture;
D O I
10.1117/12.2612798
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the domain of advanced patterning, and especially at lithography steps achieve very small sizes becomes more and more crucial. This induces measurement challenges and thus requiring the development of new, precise and robust metrology techniques. To overcome the limited constraints of different techniques, one of the most promising approaches is hybrid metrology. It consists in gathering several metrology techniques to measure all the geometrical parameters which are processed them by an algorithm (mainly machine learning algorithm). This work stands out by using for deep learning a multi-branch neural network to increase the precision of predicts. With a particular attention made to the dataset generation and specific settings for each branch, we developed the potential of this approach which increase the precision of predicts.
引用
收藏
页数:10
相关论文
共 15 条
[1]   A Review of Data Fusion Techniques [J].
Castanedo, Federico .
SCIENTIFIC WORLD JOURNAL, 2013,
[2]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[3]  
Dreyfus G., 1997, ENCICLOPEDIA ITALIAN
[4]   Data Fusion for CD Metrology: Heterogeneous Hybridization of Scatterometry, CDSEM and AFM data [J].
Hazart, J. ;
Chesneau, N. ;
Evin, G. ;
Largent, A. ;
Derville, A. ;
Therese, R. ;
Bos, S. ;
Bouyssou, R. ;
Dezauzier, C. ;
Foucher, J. .
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXVIII, 2014, 9050
[5]  
Kaltenbach HM, 2012, SPRINGERBRIEF STAT, P1, DOI 10.1007/978-3-642-23502-3
[6]  
Keras Simple, KERAS SIMPLE FLEXIBL
[7]  
Iandola FN, 2016, Arxiv, DOI [arXiv:1602.07360, 10.48550/arXiv.1602.07360]
[8]  
Reche J., 2019, THESIS GRENOBLE ALPE
[9]  
scikit-learn, Scikit-Learn Robust Scaler documentation
[10]  
Scipy API, US