Entanglement as a probe of confinement

被引:339
作者
Klebanov, Igor R. [1 ,2 ]
Kutasov, David [3 ]
Murugan, Arvind [1 ,2 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Ctr Theoret Phys, Princeton, NJ 08544 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
entanglement entropy; color confinement; large N gauge theory; gauge/string duality; phase transition;
D O I
10.1016/j.nuclphysb.2007.12.017
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the entanglement entropy in gravity duals of confining large Nc gauge theories using the proposal of [S. Ryu, T. Takayanagi, Phys. Rev. Lett. 96 (2006) 181602, hep-th/0603001; S. Ryu, T. Takayanagi, JHEP 0608 (2006) 045, hep-th/0605073]. Dividing one of the directions of space into a line segment of length I and its complement, the entanglement entropy between the two subspaces is given by the classical action of the minimal bulk hypersurface which approaches the endpoints of the line segment at the boundary. We find that in confining backgrounds there are generally two such surfaces. One consists of two disconnected components localized at the endpoints of the line segment. The other contains a tube connecting the two components. The disconnected surface dominates the entropy for 1 above a certain critical value l(crit) while the connected one dominates below that value. The change of behavior at l = l(crit) is reminiscent of the finite temperature deconfinement transition: for l < l(crit) the entropy scales as N-c(2), while for l > l(crit) as N-c(0). We argue that a similar transition should occur in any field theory with a Hagedorn spectrum of non-interacting bound states. The requirement that the entanglement entropy has a phase transition may be useful in constraining gravity duals of confining theories. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:274 / 293
页数:20
相关论文
共 32 条
[1]  
AHARONY O, 2006, JHEP, V611
[2]  
AHARONY O, ARXIV07061768
[3]  
[Anonymous], 2007, JHEP
[4]   THE HAGEDORN TRANSITION AND THE NUMBER OF DEGREES OF FREEDOM OF STRING THEORY [J].
ATICK, JJ ;
WITTEN, E .
NUCLEAR PHYSICS B, 1988, 310 (02) :291-334
[5]  
BARBON JLF, HEPTH0407236, P9
[6]   QUANTUM SOURCE OF ENTROPY FOR BLACK-HOLES [J].
BOMBELLI, L ;
KOUL, RK ;
LEE, J ;
SORKIN, RD .
PHYSICAL REVIEW D, 1986, 34 (02) :373-383
[7]   Wilson loops, confinement, and phase transitions in large N gauge theories from supergravity [J].
Brandhuber, A ;
Itzhaki, N ;
Sonnenschein, J ;
Yankielowicz, S .
JOURNAL OF HIGH ENERGY PHYSICS, 1998, (06) :XI-19
[8]  
Buchel A., 2001, JHEP, V0104
[9]   Entanglement entropy and quantum field theory: A non-technical introduction [J].
Calabrese, Pasquale ;
Cardy, John .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (03) :429-438
[10]   Entanglement and alpha entropies for a massive scalar field in two dimensions [J].
Casini, H ;
Huerta, M .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :291-307