The potential role of electric fields and plasma barodiffusion on the inertial confinement fusion database

被引:60
作者
Amendt, Peter [1 ]
Wilks, S. C. [1 ]
Bellei, C. [1 ]
Li, C. K. [2 ]
Petrasso, R. D. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
关键词
SIMULATION;
D O I
10.1063/1.3577577
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed approximate to 2x greater-than-expected deficit of neutrons in an equimolar (DHe)-He-3 fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and (DHe)-He-3 equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data. (C) 2011 American Institute of Physics. [doi:10.1063/1.3577577]
引用
收藏
页数:11
相关论文
共 15 条
[1]   Electric field and ionization-gradient effects on inertial-confinement-fusion implosions [J].
Amendt, P. A. ;
Milovich, J. L. ;
Wilks, S. C. ;
Li, C. K. ;
Petrasso, R. D. ;
Seguin, F. H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (12)
[2]   Plasma Barodiffusion in Inertial-Confinement-Fusion Implosions: Application to Observed Yield Anomalies in Thermonuclear Fuel Mixtures [J].
Amendt, Peter ;
Landen, O. L. ;
Robey, H. F. .
PHYSICAL REVIEW LETTERS, 2010, 105 (11)
[3]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[4]   KINETIC SIMULATION OF A COLLISIONAL SHOCK-WAVE IN A PLASMA [J].
CASANOVA, M ;
LARROCHE, O ;
MATTE, JP .
PHYSICAL REVIEW LETTERS, 1991, 67 (16) :2143-2146
[5]   Anomalous yield reduction in direct-drive deuterium/tritium implosions due to 3He addition [J].
Herrmann, H. W. ;
Langenbrunner, J. R. ;
Mack, J. M. ;
Cooley, J. H. ;
Wilson, D. C. ;
Evans, S. C. ;
Sedillo, T. J. ;
Kyrala, G. A. ;
Caldwell, S. E. ;
Young, C. S. ;
Nobile, A. ;
Wermer, J. ;
Paglieri, S. ;
McEvoy, A. M. ;
Kim, Y. ;
Batha, S. H. ;
Horsfield, C. J. ;
Drew, D. ;
Garbett, W. ;
Rubery, M. ;
Glebov, V. Yu. ;
Roberts, S. ;
Frenje, J. A. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[6]   STRUCTURE OF A PLASMA SHOCK WAVE [J].
JAFFRIN, MY ;
PROBSTEIN, RF .
PHYSICS OF FLUIDS, 1964, 7 (10) :1658-1674
[7]  
LANDAU LD, 1987, FLUID MECH, P232
[8]   Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion [J].
Li, C. K. ;
Seguin, F. H. ;
Rygg, J. R. ;
Frenje, J. A. ;
Manuel, M. ;
Petrasso, R. D. ;
Betti, R. ;
Delettrez, J. ;
Knauer, J. P. ;
Marshall, F. ;
Meyerhofer, D. D. ;
Shvarts, D. ;
Smalyuk, V. A. ;
Stoeckl, C. ;
Landen, O. L. ;
Town, R. P. J. ;
Back, C. A. ;
Kilkenny, J. D. .
PHYSICAL REVIEW LETTERS, 2008, 100 (22)
[9]   The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J].
Lindl, JD ;
Amendt, P ;
Berger, RL ;
Glendinning, SG ;
Glenzer, SH ;
Haan, SW ;
Kauffman, RL ;
Landen, OL ;
Suter, LJ .
PHYSICS OF PLASMAS, 2004, 11 (02) :339-491
[10]   Three-dimensional HYDRA simulations of National Ignition Facility targets [J].
Marinak, MM ;
Kerbel, GD ;
Gentile, NA ;
Jones, O ;
Munro, D ;
Pollaine, S ;
Dittrich, TR ;
Haan, SW .
PHYSICS OF PLASMAS, 2001, 8 (05) :2275-2280