MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival

被引:101
作者
Lee, Chih-Shia [1 ]
Lee, Liam C. [1 ,8 ]
Yuan, Tina L. [2 ,9 ]
Chakka, Sirisha [3 ,10 ]
Fellmann, Christof [4 ,11 ]
Lowe, Scott W. [4 ,5 ,6 ]
Caplen, Natasha J. [3 ]
McCormick, Frank [2 ,7 ]
Luo, Ji [1 ]
机构
[1] NCI, Lab Canc Biol & Genet, Ctr Canc Res, Bethesda, MD 20892 USA
[2] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94158 USA
[3] NCI, Genet Branch, Ctr Canc Res, Bethesda, MD 20892 USA
[4] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA
[5] Mem Sloan Kettering Canc Ctr, Howard Hughes Med Inst, New York, NY 10065 USA
[6] Mem Sloan Kettering Canc Ctr, Dept Canc Biol & Genet, New York, NY 10065 USA
[7] Leidos Biomed Res, Frederick Natl Lab Canc Res, Canc Res Technol Program, Frederick, MD 21702 USA
[8] Loxo Oncol, Med Affairs, Stamford, CT 06901 USA
[9] Novartis Inst Biomed Res, Oncol Translat Res, Cambridge, MA 02139 USA
[10] NIH, Natl Ctr Adv Translat Sci, Rockville, MD 20850 USA
[11] Gladstone Inst, Inst Data Sci & Biotechnol, San Francisco, CA 94158 USA
关键词
KRAS; RAF; MAPK; autophagy; siRNA; INHIBITOR TRAMETINIB GSK1120212; SYNTHETIC LETHAL INTERACTIONS; IB DOSE-ESCALATION; LUNG-CANCER; K-RAS; C-RAF; TUMOR PROGRESSION; CYCLE ARREST; MOUSE MODEL; PHASE-I;
D O I
10.1073/pnas.1817494116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.
引用
收藏
页码:4508 / 4517
页数:10
相关论文
共 72 条
[1]   Combined MEK and PI3K Inhibition in a Mouse Model of Pancreatic Cancer [J].
Alagesan, Brinda ;
Contino, Gianmarco ;
Guimaraes, Alexander R. ;
Corcoran, Ryan B. ;
Deshpande, Vikram ;
Wojtkiewicz, Gregory R. ;
Hezel, Aram F. ;
Wong, Kwok-Kin ;
Loda, Massimo ;
Weissleder, Ralph ;
Benes, Cyril ;
Engelman, Jeffrey A. ;
Bardeesy, Nabeel .
CLINICAL CANCER RESEARCH, 2015, 21 (02) :396-404
[2]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122
[3]   A Phase Ib Dose-Escalation Study of the Oral Pan-PI3K Inhibitor Buparlisib (BKM120) in Combination with the Oral MEK1/2 Inhibitor Trametinib (GSK1120212) in Patients with Selected Advanced Solid Tumors [J].
Bedard, Philippe L. ;
Tabernero, Josep ;
Janku, Filip ;
Wainberg, Zev A. ;
Paz-Ares, Luis ;
Vansteenkiste, Johan ;
Van Cutsem, Eric ;
Perez-Garcia, Jose ;
Stathis, Anastasios ;
Britten, Carolyn D. ;
Le, Ngocdiep ;
Carter, Kirsten ;
Demanse, David ;
Csonka, Denes ;
Peters, Malte ;
Zubel, Angela ;
Nauwelaerts, Heidi ;
Sessa, Cristiana .
CLINICAL CANCER RESEARCH, 2015, 21 (04) :730-738
[4]   Stem cell depletion through epidermal deletion of Rac1 [J].
Benitah, SA ;
Frye, M ;
Glogauer, M ;
Watt, FM .
SCIENCE, 2005, 309 (5736) :933-935
[5]  
Berti DA, 2017, METHODS MOL BIOL, V1487, P175, DOI 10.1007/978-1-4939-6424-6_13
[6]   c-Raf, but Not B-Raf, Is Essential for Development of K-Ras Oncogene-Driven Non-Small Cell Lung Carcinoma [J].
Blasco, Rafael B. ;
Francoz, Sarah ;
Santamaria, David ;
Canamero, Marta ;
Dubus, Pierre ;
Charron, Jean ;
Baccarini, Manuela ;
Barbacid, Mariano .
CANCER CELL, 2011, 19 (05) :652-663
[7]   A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC) [J].
Blumenschein, G. R., Jr. ;
Smit, E. F. ;
Planchard, D. ;
Kim, D. -W. ;
Cadranel, J. ;
De Pas, T. ;
Dunphy, F. ;
Udud, K. ;
Ahn, M. -J. ;
Hanna, N. H. ;
Kim, J. -H. ;
Mazieres, J. ;
Kim, S. -W. ;
Baas, P. ;
Rappold, E. ;
Redhu, S. ;
Puski, A. ;
Wu, F. S. ;
Jaenne, P. A. .
ANNALS OF ONCOLOGY, 2015, 26 (05) :894-901
[8]  
BOTTORFF D, 1995, MOL CELL BIOL, V15, P5113
[9]   Role of phosphoinositide 3-kinase regulatory isoforms in development and actin rearrangement [J].
Brachmann, SA ;
Yballe, CA ;
Innocenti, M ;
Deane, JA ;
Fruman, DA ;
Thomas, SM ;
Cantley, LC .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (07) :2593-2606
[10]   C911: A Bench-Level Control for Sequence Specific siRNA Off-Target Effects [J].
Buehler, Eugen ;
Chen, Yu-Chi ;
Martin, Scott .
PLOS ONE, 2012, 7 (12)