Transversal effects of high order numerical schemes for compressible fluid flows

被引:10
作者
Lei, Xin [1 ]
Li, Jiequan [2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
[3] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
transversal effect; generalized Riemann problem (GRP) solver; Lax-Wendroff flow solver; wave system;
D O I
10.1007/s10483-019-2444-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite volume schemes for the two-dimensional (2D) wave system are taken to demonstrate the role of the genuine dimensionality of Lax-Wendroff flow solvers for compressible fluid flows. When the finite volume schemes are applied, the transversal variation relative to the computational cell interfaces is neglected, and only the normal numerical flux is used, thanks to the Gauss-Green formula. In order to offset such defects, the Lax-Wendroff flow solvers or the generalized Riemann problem (GRP) solvers are adopted by substituting the time evolution of flows into the spatial variation. The numerical results show that even with the same convergence rate, the error by the GRP2D solver is almost one ninth of that by the multistage Runge-Kutta (RK) method.
引用
收藏
页码:343 / 354
页数:12
相关论文
共 24 条
[11]   New features of CS solitons and the formation of vortices [J].
Lee, CB .
PHYSICS LETTERS A, 1998, 247 (06) :397-402
[12]   Possible universal transitional scenario in a flat plate boundary layer: Measurement and visualization [J].
Lee, CB .
PHYSICAL REVIEW E, 2000, 62 (03) :3659-3670
[13]   Experimental studies of surface waves inside a cylindrical container [J].
Lee, Cunbiao ;
Peng, Huaiwu ;
Yuan, Huijing ;
Wu, Jiezhi ;
Zhou, Mingde ;
Hussain, Fazle .
JOURNAL OF FLUID MECHANICS, 2011, 677 :39-62
[14]  
LeVeque Randall J., 2002, Cambridge Texts in Applied Mathematics, V31, DOI DOI 10.1017/CBO9780511791253
[15]  
Li JQ, 2003, DISCRETE CONT DYN S, V9, P559
[16]   Evolution Galerkin methods for hyperbolic systems in two space dimensions [J].
Lukácová-Medvid'ová, M ;
Morton, KW ;
Warnecke, G .
MATHEMATICS OF COMPUTATION, 2000, 69 (232) :1355-1384
[17]  
Mandal J. C., 1989, HIGHER ORDER ACCURAT
[18]   KINETIC FLUX VECTOR SPLITTING FOR EULER EQUATIONS [J].
MANDAL, JC ;
DESHPANDE, SM .
COMPUTERS & FLUIDS, 1994, 23 (02) :447-478
[19]  
Roe P., 2017, MULTIDIMENSIONAL UPW
[20]  
Strang G., 1998, SIAM J NUMER ANAL, V53, P506