Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s

被引:204
作者
Van de Vyver, Stijn [1 ]
Thomas, Joice [2 ]
Geboers, Jan [1 ]
Keyzer, Stefaan [1 ]
Smet, Mario [2 ]
Dehaen, Wim [2 ]
Jacobs, Pierre A. [1 ]
Sels, Bert F. [1 ]
机构
[1] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, Dept Chem, B-3001 Heverlee, Belgium
关键词
CARBON BEARING SO3H; GAMMA-VALEROLACTONE; SOLID-ACID; REACTIVE EXTRACTION; ETHYLENE-GLYCOL; DIPHENOLIC ACID; ORGANIC-ACIDS; D-FRUCTOSE; CONVERSION; GLUCOSE;
D O I
10.1039/c1ee01418h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Innovative catalyst design holds the key to fundamental advances in the transformation of cellulose to chemicals and transportation fuels, both of which are vital to meet the challenge of increasing energy costs and the finite nature of fossil fuel reserves. Here we report on the functionalization, characterization and successful application of sulfonated hyperbranched poly(arylene oxindole)s for the direct catalytic conversion of cellulose to levulinic acid. The use of water-soluble hyperbranched polymers in combination with ultrafiltration is conceptually novel and opens new horizons in the aqueous-phase processing of cellulose substrates with various degrees of crystallinity. Compared to most conventional types of acid catalysts, these highly acidic polymers demonstrate superior catalytic performance in terms of both activity and selectivity. Additionally, this molecular approach can be successfully transferred to the acid-catalyzed degradation of other abundant biomass resources, including starch, inulin and xylan.
引用
收藏
页码:3601 / 3610
页数:10
相关论文
共 121 条
[1]   Dehydration Of D-glucose in high temperature water at pressures up to 80 MPa [J].
Aida, Taku Michael ;
Sato, Yukiko ;
Watanabe, Masaru ;
Tajima, Kiyohiko ;
Nonaka, Toshiyuki ;
Hattori, Hideo ;
Arai, Kunio .
JOURNAL OF SUPERCRITICAL FLUIDS, 2007, 40 (03) :381-388
[2]   Catalytic conversion of biomass to biofuels [J].
Alonso, David Martin ;
Bond, Jesse Q. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2010, 12 (09) :1493-1513
[3]   Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: Formation of 5-hydroxymethylfurfural, levulinic, and formic acids [J].
Asghari, Feridoun Salak ;
Yoshida, Hiroyuki .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (23) :7703-7710
[4]   Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water [J].
Asghari, FS ;
Yoshida, H .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (07) :2163-2173
[5]   Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone [J].
Bicker, M ;
Hirth, J ;
Vogel, H .
GREEN CHEMISTRY, 2003, 5 (02) :280-284
[6]   γ-Valerolactone Ring-Opening and Decarboxylation over SiO2/Al2O3 in the Presence of Water [J].
Bond, Jesse Q. ;
Alonso, David Martin ;
West, Ryan M. ;
Dumesic, James A. .
LANGMUIR, 2010, 26 (21) :16291-16298
[7]   Production of levulinic acid and use as a platform chemical for derived products [J].
Bozell, JJ ;
Moens, L ;
Elliott, DC ;
Wang, Y ;
Neuenscwander, GG ;
Fitzpatrick, SW ;
Bilski, RJ ;
Jarnefeld, JL .
RESOURCES CONSERVATION AND RECYCLING, 2000, 28 (3-4) :227-239
[8]   CHEMISTRY Connecting Biomass and Petroleum Processing with a Chemical Bridge [J].
Bozell, Joseph J. .
SCIENCE, 2010, 329 (5991) :522-523
[9]   Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid [J].
Braden, Drew J. ;
Henao, Carlos A. ;
Heltzel, Jacob ;
Maravelias, Christos T. ;
Dumesic, James A. .
GREEN CHEMISTRY, 2011, 13 (07) :1755-1765
[10]   Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels [J].
Carlos Serrano-Ruiz, Juan ;
Dumesic, James A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :83-99